首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Theory suggests that biodiversity might help sustain multiple ecosystem functions. To evaluate possible biodiversity–multifunctionality relationships in a natural setting, we considered different spatial scales of diversity metrics for soil fungi in the northern forests of Japan. We found that multifunctionality increased with increasing local species richness, suggesting a limited degree of multifunctional redundancy. This diversity–multifunctionality relationship was independent of the compositional uniqueness of each community. However, we still found the importance of community composition, because there was a positive correlation between community dissimilarity and multifunctional dissimilarity across the landscape. This result suggests that functional redundancy can further decrease when spatial variations in identities of both species and functions are simultaneously considered at larger spatial scales. We speculate that different scales of diversity could provide multiple levels of insurance against the loss of functioning if high‐levels of local species diversity and compositional variation across locations are both maintained. Alternatively, making species assemblages depauperate may result in the loss of multifunctionality.  相似文献   

2.
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive‐based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.  相似文献   

3.
Ecosystem resilience is the inherent ability to absorb various disturbances and reorganize while undergoing state changes to maintain critical functions. When ecosystem resilience is sufficiently degraded by disturbances, ecosystem is exposed at high risk of shifting from a desirable state to an undesirable state. Ecological thresholds represent the points where even small changes in environmental conditions associated with disturbances lead to switch between ecosystem states. There is a growing body of empirical evidence for such state transitions caused by anthropogenic disturbances in a variety of ecosystems. However, fewer studies addressed the interaction of anthropogenic and natural disturbances that often force an ecosystem to cross a threshold which an anthropogenic disturbance or a natural disturbance alone would not have achieved. This fact highlights how little is known about ecosystem dynamics under uncertainties around multiple and stochastic disturbances. Here, we present two perspectives for providing a predictive scientific basis to the management and conservation of ecosystems against multiple and stochastic disturbances. The first is management of predictable anthropogenic disturbances to maintain a sufficient level of biodiversity for ensuring ecosystem resilience (i.e., resilience-based management). Several biological diversity elements appear to confer ecosystem resilience, such as functional redundancy, response diversity, a dominant species, a foundation species, or a keystone species. The greatest research challenge is to identify key elements of biodiversity conferring ecosystem resilience for each context and to examine how we can manage and conserve them. The second is the identification of ecological thresholds along existing or experimental disturbance gradients. This will facilitate the development of indicators of proximity to thresholds as well as the understanding of threshold mechanisms. The implementation of forewarning indicators will be critical particularly when resilience-based management fails. The ability to detect an ecological threshold along disturbance gradients should therefore be essential to establish a backstop for preventing the threshold from being crossed. These perspectives can take us beyond simply invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical solutions to cope with uncertainties and ecological surprises in a changing world.  相似文献   

4.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   

5.
Restoration projects may have broad and complex ecological goals that require distinct and integrative measures for evaluating restoration development and success. However, most studies usually evaluate structural and species composition parameters, with less emphasis on ecological processes and functioning. The main objective of this study is to use an integrated approach that considers structural and floristic parameters as well as ecological processes and functional traits to evaluate and identify the parameters that most differentiate forests undergoing restoration and their reference sites. Additionally, we tested if the recovery of ecosystem functionality happens at the same rate as the recovery of vegetation structure. We performed the study in three 10‐year‐old restoration and three adjacent reference areas located in the south of Brazil (subtropical forest). We sampled a total of 15 plots (100 m2 in size) per treatment, per site and collected data of trees, natural regeneration, litter stock, decomposition, detritivory, and litter and soil C:N ratio. We also used a multifunctionality index to account for the broad functionality of the ecosystem. Results showed that forests undergoing restoration had lower values of vegetation structure and multifunctionality, indicating that restoration sites have not yet achieved values similar to the reference ecosystem. Values for species richness and functional diversity, however, were higher in restoration sites. Moreover, even though values were lower for multifunctionality, differences toward reference sites were less pronounced than we expected when compared to values of vegetation structure, showing that ecological processes may recover even before the full recovery of aboveground vegetation.  相似文献   

6.
1. Recent work has emphasised the benefit of using functional measures when relating biodiversity to ecosystem functioning. In this study, we investigated the extent to which functional and taxonomic diversity might be related to summed biovolume in community assemblages of 212 species of diatoms collected from 65 temperate lakes in western and central Quebec, Canada. 2. We quantified functional diversity as both the total path‐length of a functional dendrogram (FD) and the variance in species traits (TV) for a given community. Selected traits included both size and responses to a set of environmental variables known to be influential for diatom communities. 3. Species richness, as well as both FD and TV, was positively associated with total diatom biovolume at the level of the entire diatom community, suggesting that diversity in response types (particularly to total phosphorus and pH) is important for diatom community production. 4. Although functional measures of diversity did not provide enhanced explanatory power over species richness, we argue that an exploration of functional traits potentially allows greater insight into the mechanisms underlying biodiversity–ecosystem functioning relations, indicating which traits might be most influential in driving community biomass production.  相似文献   

7.
Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.  相似文献   

8.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species'' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.  相似文献   

9.
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion – a key ecosystem process that can control aquatic productivity – to human land development across the contiguous United States. By linking a continental‐scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local‐ and continental‐scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land‐use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space.  相似文献   

10.
贾鹏  杜国祯 《生命科学》2014,(2):153-157
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。  相似文献   

11.
The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS.  相似文献   

12.
The potential of biodiversity loss to impair the delivery of ecosystem services has motived ecologists to better understand the relationship between biodiversity and ecosystem functioning. Although increasing evidence underlines the collective contribution of different biodiversity components on the simultaneous performance of multiple functions (multifunctionality), we know little about the trade‐offs between individual diversity effects and the extent to which they determine multifunctionality differentially. Here, at a subcontinental scale of 62 dryland sites, we show in phototrophic microbiota of biological soil crusts (biocrusts) that, whereas richness alone is unable to guarantee the maxima of multifunctional performance, interspecies facilitation and compositional identity are particularly stronger but often neglected predictors. The inconsistent effects of different biodiversity components imply that soil multifunctionality can be lost despite certain species remaining present. Moreover, we reveal a significant empirical association between species functional importance and its topological feature in co‐occurrence networks, indicating a functional signal of species interaction. Nevertheless, abundant species tend to isolate and merely interact within small topological structures, but rare species were tightly connected in complicated network modules. Our findings suggest that abundant and rare species of soil phototrophs exhibit distinct functional relevance. These results give a comprehensive view of how soil constructive species drive multifunctionality in biocrusts and ultimately promote a deeper understanding of the consequences of biodiversity loss in real‐world ecosystems.  相似文献   

13.
植物功能性状、功能多样性与生态系统功能: 进展与展望   总被引:1,自引:0,他引:1  
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。  相似文献   

14.
Abstract Biodiversity is frequently associated with functional redundancy. Indo‐Pacific coral reefs incorporate some of the most diverse ecosystems on the globe with over 3000 species of fishes recorded from the region. Despite this diversity, we document changes in ecosystem function on coral reefs at regional biogeographical scales as a result of overfishing of just one species, the giant humphead parrotfish (Bolbometopon muricatum). Each parrotfish ingests over 5 tonnes of structural reef carbonates per year, almost half being living corals. On relatively unexploited oceanic reefs, total ingestion rates per m2 balance estimated rates of reef growth. However, human activity and ecosystem disruption are strongly correlated, regardless of local fish biodiversity. The results emphasize the need to consider the functional role of species when formulating management strategies and the potential weakness of the link between biodiversity and ecosystem resilience.  相似文献   

15.
This study tested an hypothesis concerning patterns in species abundance in ecological communities. Why do the majority of species occur in low abundance, with just a few making up the bulk of the biomass? We propose that many of the minor species are analogues of the dominants in terms of the ecosystem functions they perform, but differ in terms of their capabilities to respond to environmental stresses and disturbance. They thereby confer resilience on the community with respect to ecosystem function. Under changing conditions, ecosystem function is maintained when dominants decline or are lost because functionally equivalent minor species are able to substitute for them. We have tested this hypothesis with respect to ecosystem functions relating to global change. In particular, we identified five plant functional attributes—height, biomass, specific leaf area, longevity, and leaf litter quality—that determine carbon and water fluxes. We assigned values for these functional attributes to each of the graminoid species in a lightly grazed site and in a heavily grazed site in an Australian rangeland. Our resilience proposition was cast in the form of three specific hypotheses in relation to expected similarities and dissimilarities between dominant and minor species, within and between sites. Functional similarity—or ecological distance—was determined as the euclidean distance between species in functional attribute space. The analyses provide evidence in support of the resilience hypothesis. Specifically, within the lightly grazed community, dominant species were functionally more dissimilar to one another, and functionally similar species more widely separated in abundance rank, than would be expected on the basis of average ecological distances in the community. Between communities, depending on the test used, two of three, or three of four minor species in the lightly grazed community that were predicted to increase in the heavily grazed community did in fact do so. Although there has been emphasis on the importance of functional diversity in supporting the flow of ecosystem goods and services, the evidence from this study indicates that functional similarity (between dominant and minor species, and among minor species) may be equally important in ensuring persistence (resilience) of ecosystem function under changing environmental conditions.  相似文献   

16.
While there has been increasing interest in how taxonomic diversity is changing over time, less is known about how long‐term taxonomic changes may affect ecosystem functioning and resilience. Exploring long‐term patterns of functional diversity can provide key insights into the capacity of a community to carry out ecological processes and the redundancy of species’ roles. We focus on a protected freshwater system located in a national park in southeast Germany. We use a high‐resolution benthic macroinvertebrate dataset spanning 32 years (1983–2014) and test whether changes in functional diversity are reflected in taxonomic diversity using a multidimensional trait‐based approach and regression analyses. Specifically, we asked: (i) How has functional diversity changed over time? (ii) How functionally distinct are the community''s taxa? (iii) Are changes in functional diversity concurrent with taxonomic diversity? And (iv) what is the extent of community functional redundancy? Resultant from acidification mitigation, macroinvertebrate taxonomic diversity increased over the study period. Recovery of functional diversity was less pronounced, lagging behind responses of taxonomic diversity. Over multidecadal timescales, the macroinvertebrate community has become more homogenous with a high degree of functional redundancy, despite being isolated from direct anthropogenic activity. While taxonomic diversity increased over time, functional diversity has yet to catch up. These results demonstrate that anthropogenic pressures can remain a threat to biotic communities even in protected areas. The differences in taxonomic and functional recovery processes highlight the need to incorporate functional traits in assessments of biodiversity responses to global change.  相似文献   

17.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

18.
Theory predicts a positive relationship between biodiversity and stability in ecosystem properties, while diversity is expected to have a negative impact on stability at the species level. We used virtual experiments based on a dynamic simulation model to test for the diversity–stability relationship and its underlying mechanisms in Central European forests. First our results show that variability in productivity between stands differing in species composition decreases as species richness and functional diversity increase. Second we show temporal stability increases with increasing diversity due to compensatory dynamics across species, supporting the biodiversity insurance hypothesis. We demonstrate that this pattern is mainly driven by the asynchrony of species responses to small disturbances rather than to environmental fluctuations, and is only weakly affected by the net biodiversity effect on productivity. Furthermore, our results suggest that compensatory dynamics between species may enhance ecosystem stability through an optimisation of canopy occupancy by coexisting species.  相似文献   

19.
Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap—i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels—despite covering only approximately 1% of the marsh surface—strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species'' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems. We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity–ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems.  相似文献   

20.
Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one‐off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications. The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号