首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
Dog platelets challenged with arachidonic acid fail to aggregate but synthesize a substance which aggregates rabbit and human platelets, this aggregation being suppressed by dibutyryl cyclic AMP. The aggregating substance contracts strips of rabbit aorta and of coeliac and mesenteric arteries, is soluble in diethyl ether, has a half-life of about 40 seconds at 37 degrees C and of 100 seconds at 22 degrees C. Its generation is blocked by various inhibitors of prostaglandin biosynthesis. The thromboxane A2 synthetase inhibitor imidazole and its analogue benzimidazolamine also suppress generation of vessel contracting activity in incubates of dog platelets and prostaglandin H2. Since dog platelets also transform prostaglandin H2 into thromboxane A2 their failure to aggregate, when stimulated by arachidonic acid or by prostaglandin H2, is not due to lack of thromboxane synthesizing ability.  相似文献   

2.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

3.
Human erythroleukemia cells transformed arachidonic acid and prostaglandin endoperoxide H2 into thromboxane A2. Stimulation of these cells with A23187 or thrombin, however, produced no thromboxane. Similarly, cells labeled with [3H]-arachidonic acid released no detectable label upon stimulation. Data suggest that human erythroleukemia cells contain the enzymatic capacity for thromboxane formation from exogenous precursors, but lack the endogenous mechanisms for arachidonate release. The presence of thromboxane synthase messenger RNA was verified using the polymerase chain reaction. Amplification and sequence analysis of a 528 bp cDNA demonstrated virtually 100% identity to a published thromboxane synthase cDNA fragment.  相似文献   

4.
The product of oxygenation of arachidonic acid by the prostaglandin H synthases (PGHS), prostaglandin H(2) (PGH(2)), undergoes rearrangement to the highly reactive gamma-ketoaldehydes, levuglandin (LG) E(2), and LGD(2). We have demonstrated previously that LGE(2) reacts with the epsilon-amine of lysine to form both the levuglandinyl-lysine Schiff base and the pyrrole-derived levuglandinyl-lysine lactam adducts. We also have reported that these levuglandinyl-lysine adducts are formed on purified PGHSs following the oxygenation of arachidonic acid. We now present evidence that the levuglandinyl-lysine lactam adduct is formed in human platelets upon activation with exogenous arachidonic acid or thrombin. After proteolytic digestion of the platelet proteins, and isolation of the adducted amino acid residues, this adduct was identified by liquid chromatography-tandem mass spectrometry. We also demonstrate that formation of these adducts is inhibited by indomethacin, a PGHS inhibitor, and is enhanced by an inhibitor of thromboxane synthase. These data establish that levuglandinyl-lysine adducts are formed via a PGHS-dependent pathway in whole cells, even in the presence of an enzyme that metabolizes PGH(2). They also demonstrate that a physiological stimulus is sufficient to lead to the lipid modification of proteins through the levuglandin pathway in human platelets.  相似文献   

5.
Dog platelets challenged with arachidonic acid fail to aggregate but synthesize a substance which aggregates rabbit and human platelets, this aggregation being suppressed by dibutyryl cyclic AMP. The aggregating substance contracts strips of rabbit aorta and of coeliac and mesenteric arteries, is soluble in diethyl ether, has a half-life of about 40 seconds at 37°C and of 100 seconds at 22°C. Its generation is blocked by various inhibitors of prostaglandin biosynthesis. The thromboxane A2 synthetase inhibitor imidazole and its analogue benzimidazolamine also suppress generation of vessel contracting activity in incubates of dog platelets and prostaglandin H2. Since dog platelets also transform prostaglandin H2 into thromboxane A2 their failure to aggregate, when stimulated by arachidonic acid or by prostaglandin H2, is not due to lack of thromboxane synthesizing ability.  相似文献   

6.
Imidazole and compound L8027 (selective inhibitors of thromboxane synthase) produced parallel inhibition of malonaldehyde and thromboxane B2 secretion induced by collagen or thrombin in gel-filtered suspensions of human platelets. Comparing the effects of these inhibitors and aspirin on secretion of granule constituents indicated that platelet degranulation depends mainly on thromboxane production; prostaglandin endoperoxides contributed little.  相似文献   

7.
Employing a cell penetrating calpain inhibitor (calpeptin), the role of calpain in platelet activation was examined. In washed platelets (WPs) both thrombin and collagen-induced platelet aggregation were dose-dependently inhibited by calpeptin. The addition of plasma to WPs interfered with the action of calpeptin, however more than 3 min preincubation of calpeptin with WPs completely abolished the influence of plasma. In thrombin-activated WPs with calcium, the increase of intracellular calcium concentration, [Ca2+]i, and the production of inositol triphosphate (IP3) were dose-dependently inhibited by calpeptin. The generation of thromboxane B2 (TxB2) was inhibited by calpeptin in collagen and thrombin-activated WPs. In [3H]-arachidonic acid (AA)-labelled platelets, calpeptin increased the amount of [3H]-AA liberated by inhibiting [3H]-AA degradation after collagen or thrombin stimulation. When [14C]-AA degradation by the platelet suspension was observed, calpeptin inhibited TxB2 and hydroxyheptadecatrienoic acid (HHT) generation but increased prostaglandin (PG) E1, E2, 12-hydroxyeicosatetraenoic acid (12HETE) and AA. Based on these findings, calpain may be involved in the activation phospholipase C and thromboxane synthetase.  相似文献   

8.
Previous studies suggested that cultured human endothelial cells metabolize arachidonic acid to thromboxane A2. When primary cultures of human umbilical vein endothelial cells were incubated with 14C-arachidonic acid and the 14C-metabolites resolved by reverse phase high pressure liquid chromatography, radioactive products were observed that comigrated with 6-keto-prostaglandin F1alpha and thromboxane B2, the degradation products of prostacyclin and thromboxane A2, respectively. Since platelets synthesize thromboxane A2, the present study examined the hypothesis that adherent platelets may contaminate the primary cultures of human umbilical vein endothelial cells and be responsible for thromboxane B2 production. Confluent primary cultures or passaged cells were stimulated with histamine (10(-5) M). Incubation buffer was analyzed by specific radioimmunoassays for 6-keto-prostaglandin F1alpha and thromboxane B2. The production of thromboxane B2 decreased in the passaged cells (207 +/- 44 pg/ml versus 65 +/- 12 pg/ml; primary versus passaged cells). A moderate decrease in the yield of 6-keto-prostaglandin F1alpha was measured in the passaged cells compared to the primary cultures (3159 +/- 356 pg/ml versus 1678 +/- 224 pg/ml, primary versus passaged cells). If the primary cultures were incubated with human platelet-rich plasma for 30 min prior to stimulation with histamine, the amount of thromboxane B2 increased approximately 10-fold. In an additional experiment, sub-confluent primary cells were incubated with platelet-rich plasma for 30 min, washed to remove non-adherent platelets, and allowed to reach confluency. Confluent cells were then passaged and stimulated with histamine. The amount of thromboxane B2 was not significantly different from that obtained with passaged cells that had not been incubated with platelet-rich plasma during the primary culture (83 +/- 15 pg/ml versus 65 +/- 12 pg/ml, respectively). If the cyclooxygenase inhibitor indomethacin was included in the incubations, the amounts of both thromboxane B2 and 6-keto-prostaglandin F1alpha decreased. In contrast, the thromboxane A2 synthase inhibitor dazoxiben blocked thromboxane production and had no effect on the amount of 6-keto-prostaglandin F1alpha. Light microscopy revealed the presence of adherent platelets in primary cultures with and without platelet-rich plasma but no platelets were observed in any group of passaged cells. Histofluorescence for platelet serotonin indicated the presence of platelets only in primary cultures of human umbilical vein endothelial cells or in cultures pre-incubated with platelet-rich plasma. These studies suggest that primary cultures of human umbilical vein endothelial cells contain adherent platelets that contribute to thromboxane synthesis.  相似文献   

9.
After stimulation of the washed human blood platelets by arachidonic acid (AA), the concurrent evaluations for formed malondialdehyde (MDA) measured by the common photometrical thiobarbituric acid (TBA) method, and for thromboxane B2 (TXB2) measured by gas chromatography, revealed that the formed MDA exceeded the amount of TXB2 on a molar base. However, MDA and TXB2 originating from thromboxane synthase activity should be produced in approximately equimolar amounts. By treatment of the stimulated platelet samples with stannous chloride it is possible to reduce all peroxidized products of AA which generate MDA otherwise during the TBA reaction and to estimate MDA and TXB2 in a ratio of nearly 1:1. The stannous chloride treatment does not destroy the MDA and does not influence the TBA reaction with MDA. Therefore the simple and quick TBA method can be used after stannous chloride treatment for estimation of thromboxane synthase activity in AA stimulated washed human platelets.  相似文献   

10.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

11.
The present study was designed to determine whether platelets transfer arachidonic acid or prostaglandin endoperoxide intermediates to macrophages which may be further metabolized into cyclooxygenase products. Adherent peritoneal macrophages were prepared from rats fed either a control diet or an essential fatty acid-deficient diet, and incubated with a suspension of washed rat platelets. Macrophage cyclooxygenase metabolism was inhibited by aspirin. In the presence of a thromboxane synthetase inhibitor, 7-(1-imidazolyl)heptanoic acid, immunoreactive 6-ketoprostaglandin F1 alpha formation was significantly increased 3-fold. Since this increase was greater (P less than 0.01) than that seen with either 7-(1-imidazolyl)heptanoic acid-treated platelets or aspirin-treated macrophages alone, these results indicate that shunting of endoperoxide from platelets to macrophages may have occurred. In further experiments, macrophages from essential fatty acid-deficient rats were substituted for normal macrophages. Essential fatty acid-deficient macrophages, depleted of arachidonic acid, produced only 2% of the amount of eicosanoids compared to macrophages from control rats. When platelets were exposed to aspirin, stimulated with thrombin, and added to essential fatty acid-deficient macrophages, significantly more immunoreactive 6-ketoprostaglandin F1 alpha was formed than in the absence of platelets. This increased macrophage immunoreactive 6-ketoprostaglandin F1 alpha synthesis, therefore, must have occurred from platelet-derived arachidonic acid. These data indicate that in vitro, in the presence of an inhibition of thromboxane synthetase, prostaglandin endoperoxides, as well as arachidonic acid, may be transferred between these two cell types.  相似文献   

12.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

13.
Resting rat pulmonary alveolar macrophages exposed to acrolein were stimulated to synthesize and release thromboxane B2 and prostaglandin E2 in a dose-dependent manner. Zymosan-activated pulmonary alveolar macrophages released approximately twice as much prostaglandin E2 as thromboxane B2, whereas acrolein-activated pulmonary alveolar macrophages released 4-5 times less prostaglandin E2 than thromboxane B2. In the zymosan-stimulated pulmonary alveolar macrophages, acrolein also induced a reversal in the relative amounts of prostaglandin E2 and thromboxane B2 synthesized and released into the culture medium. This reversal was achieved by a dose-dependent reduction in prostaglandin E2 synthesis. Although phagocytosis was also inhibited in a dose-dependent manner, the reduction in prostaglandin E2 appeared to be partially independent of particle ingestion since thromboxane B2 synthesis was not affected by low doses of acrolein. In fact, high doses induced a slight enhancement in thromboxane B2 synthesis. These results suggest that acrolein selectively inhibited the enzyme, prostaglandin endoperoxide E isomerase, necessary for the conversion of the endoperoxide to prostaglandin E2. Sulfhydryl reagents such as N-ethylmaleimide and 5,5'-dithiobis (2-nitrobenzoic acid) mimicked acrolein's effects, and reduced glutathione afforded protection against the effects of acrolein. These results indicated the possible involvement of acrolein's sulfhydryl reactivity in the inhibition of the isomerase enzyme. Propionaldehyde had no effect on macrophage arachidonic acid metabolism whereas crotonaldehyde mimicked the effects of acrolein. Pulmonary macrophages were unable to reverse the acrolein effects on arachidonate metabolite synthesis after 6 h in an acrolein-free environment. These data indicated the necessity of the unsaturated carbon bond for the acrolein effects on arachidonic acid metabolism and the relative irreversibility of acrolein's reaction with the macrophage.  相似文献   

14.
We investigated the covalent binding of intermediates in prostaglandin biosynthesis to tissue macromolecules. Following incubation of [1-14C]arachidonic acid with the microsomal fraction from guinea pig lung, ram or bovine seminal vesicle, human platelets, rabbit kidney, or rat stomach fundus, the amount of covalent binding of arachidonic acid metabolites expressed as percentage of total arachidonic acid metabolized varied from tissue to tissue ranging from 3% in human platelets to 18.2% in ram seminal vesicles. In general, the thromboxane synthesizing tissues had less covalently bound metabolites than the other tissues. The amount of covalently bound metabolites was increased in the guinea pig lung microsomes when the thromboxane synthetase inhibitor, N-0164, was added to the incubation mixture. The covalent binding of arachidonic acid metabolite(s) was greatly reduced by the addition of glutathione to the incubation mixture. In addition to the covalently bound metabolites, water-soluble metabolites derived from arachidonic acid metabolism were also observed. The amount of water-soluble metabolites was small in each tissue except for the rat stomach fundus. In the rat stomach fundus the water-soluble metabolites accounted for over 50% of the total metabolites. Conditions which would tend to increase or decrease the levels of free prostaglandin endoperoxides during the incubation of arachidonic acid with the microsomes gave increased or decreased levels of covalent binding. Our data suggest that the prostaglandin endoperoxides are responsible for the covalent binding observed during prostaglandin biosynthesis. This covalent binding to tissue macromolecules may be of physiological and pathological significance.  相似文献   

15.
A peroxidase-linked immunoassay of the sandwich type was developed for a quantitative determination of the amount of human cyclooxygenase. Two species of monoclonal antibodies (hPES01 against the human enzyme and PES-5 against the bovine enzyme) were utilized, which recognized different epitopes on the cyclooxygenase of human platelets. The peroxidase activity of the immunoprecipitate was correlated with the amount of cyclooxygenase. The enzyme immunoassay was applied to platelets from 15 normal subjects and a clinical case of platelet cyclooxygenase abnormality with a prolonged bleeding time. Almost the same level of immunoreactive protein was found in platelets of both normal subjects and the patient. However, the solubilized enzyme from the patient's platelets did not transform arachidonic acid to prostaglandin H2 (PGH2) while thromboxane production from PGH2 was observed at a normal level.  相似文献   

16.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

17.
Intramuscular administration to female rabbits of 2 mg/kg ethinylestradiol every other day for 10 days increased the uptake and incorporation of [14C]arachidonic acid into platelet lipids, and increased the proportion of [14C]arachidonic acid released from platelets after stimulation by thrombin. The conversion of [14C]arachidonic acid to thromboxane B2 did not differ between the control and ethinylestradiol-treated groups. Thus, the results of this study indicate that the major site in the prostaglandin metabolic pathway influenced by estrogen is the incorporation and release of arachidonic acid in platelet phospholipids.  相似文献   

18.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

19.
Two selective thromboxane A2 synthetase inhibitors, imidazole and 9,11-azoprosta-5,13-dienoic acid (azo analog I) were compared to determine their effects on the quantitative formation of thromboxane B2 and prostaglandin E2 accompanying human platelet aggregation. Azo analog I was at least 200 times more potent, on a molar basis, than imidazole in suppressing thromboxane B2 formation in either platelet-rich plasma or washed platelet suspensions aggregated with arachidonic acid or prostaglandin H2. The inhibitors differed in their effect on the aggregation response itself. Azo analog I selectively suppressed thromboxane A2 formation with an accompanying, parallel, suppression of the platelet aggregation. Imidazole selectively suppressed thromboxane A2 formation, but only suppressed the accompanying aggregation in platelet rich plasma, and not washed platelet suspensions. The results indicate that azo analog I functions by competitive inhibition of prostaglandin H2 on the thromboxane synthetase, and that imidazole, while it suppresses thromboxane A2 formation, may have an associated agonist activity that enhances platelet aggregation. The data presented support this hypothesis, and they emphasize the importance of thromboxane A2 in arachidonate mediated platelet aggregation.  相似文献   

20.
The Vinca alkaloid vinblastine causes dose-dependent inhibition of malondialdehyde formation and aggregation in activated human platelets as a result of inhibition of arachidonic acid metabolism via the thromboxane pathway (Brammer, J.P., Kerecsen, L. and Maguire, M.H. (1982) Eur. J. Pharmacol. 81, 577). The nature of the inhibition by vinblastine has been investigated with human platelet microsomes, measuring conversion of arachidonic acid to malondialdehyde and thromboxane B2 via spectrophotometric assay and RIA, respectively, determining arachidonate oxygenation by monitoring oxygen consumption, and identifying metabolites formed from [1-14C]arachidonic acid. Vinblastine was compared with other Vinca alkaloids and with structurally unrelated microtubule-active drugs. Vinca alkaloids were unique in causing dose-dependent inhibition of both malondialdehyde and thromboxane B2. Order of potency was vinblastine = vincristine = vindesine greater than leurosine greater than vinepidine. Inhibition of malondialdehyde and thromboxane B2 by 50 microM vinblastine was at least 60%. Microsomal cyclooxygenase was not inhibited by 200 microM vinblastine. Inhibition by vinblastine of [1-14C]arachidonic acid conversion to thromboxane B2 was associated with a 4-fold increase in prostaglandin E2 formation. Thromboxane B2, but not malondialdehyde, formation was inhibited by colchicine less than nocodazole much less than vinblastine. Results indicate that microsomal thromboxane synthetase is inhibited by Vinca alkaloids and other tubulin-binding drugs, and suggest that the action of vinblastine in inhibiting thromboxane synthesis, aggregation and release in intact platelets is not dependent upon its antimicrotubular actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号