首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cytotoxic T-lymphocyte (CTL) responses are crucial for the control of immunodeficiency virus replication. Possible involvement of a dominant single epitope-specific CTL in control of viral replication has recently been indicated in preclinical AIDS vaccine trials, but it has remained unclear if multiple epitope-specific CTLs can be involved in the vaccine-based control. Here, by following up five rhesus macaques that showed vaccine-based control of primary replication of a simian immunodeficiency virus, SIVmac239, we present evidence indicating involvement of multiple epitope-specific CTL responses in this control. Three macaques maintained control for more than 2 years without additional mutations in the provirus. However, in the other two that shared a major histocompatibility complex haplotype, viral mutations were accumulated in a similar order, leading to viral evasion from three epitope-specific CTL responses with viral fitness costs. Accumulation of these multiple escape mutations resulted in the reappearance of plasma viremia around week 60 after challenge. Our results implicate multiple epitope-specific CTL responses in control of immunodeficiency virus replication and furthermore suggest that sequential accumulation of multiple CTL escape mutations, if allowed, can result in viral evasion from this control.  相似文献   

2.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

3.
Cytotoxic T lymphocyte (CTL) responses play a central role in viral suppression in human immunodeficiency virus (HIV) infections. Prophylactic vaccination resulting in effective CTL responses after viral exposure would contribute to HIV control. It is important to know how CTL memory induction by vaccination affects postexposure CTL responses. We previously showed vaccine-based control of a simian immunodeficiency virus (SIV) challenge in a group of Burmese rhesus macaques sharing a major histocompatibility complex class I haplotype. Gag(206-216) and Gag(241-249) epitope-specific CTL responses were responsible for this control. In the present study, we show the impact of individual epitope-specific CTL induction by prophylactic vaccination on postexposure CTL responses. In the acute phase after SIV challenge, dominant Gag(206-216)-specific CTL responses with delayed, naive-derived Gag(241-249)-specific CTL induction were observed in Gag(206-216) epitope-vaccinated animals with prophylactic induction of single Gag(206-216) epitope-specific CTL memory, and vice versa in Gag(241-249) epitope-vaccinated animals with single Gag(241-249) epitope-specific CTL induction. Animals with Gag(206-216)-specific CTL induction by vaccination selected for a Gag(206-216)-specific CTL escape mutation by week 5 and showed significantly less decline of plasma viral loads from week 3 to week 5 than in Gag(241-249) epitope-vaccinated animals without escape mutations. Our results present evidence indicating significant influence of prophylactic vaccination on postexposure CTL immunodominance and cooperation of vaccine antigen-specific and non-vaccine antigen-specific CTL responses, which affects virus control. These findings provide great insights into antigen design for CTL-inducing AIDS vaccines.  相似文献   

4.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

5.
Since virus-specific CTL play a central role in containing HIV replication, a candidate AIDS vaccine should generate virus-specific CTL responses. In this study, the ability of a recombinant canarypox virus expressing SIV Gag-Pol-Env (ALVAC/SIV gag-pol-env) was assessed for its ability to elicit both dominant and subdominant epitope-specific CTL responses in rhesus monkeys. Following a series of five immunizations, memory CTL responses specific for a dominant Gag epitope could be demonstrated in the peripheral blood of vaccinated monkeys. Memory CTL responses to a subdominant Pol epitope were undetectable in these animals. Following challenge with SIVmac251, the experimentally vaccinated animals developed high frequency CTL responses specific for the dominant Gag epitope that emerged in temporal association with the early containment of viral replication. Interestingly, the experimentally vaccinated, but not the control vaccinated animals, developed CTL responses to the subdominant Pol epitope that were detectable only after containment of early viremia. Thus, recombinant canarypox vaccination elicited low frequency, but durable memory CTL populations. The temporal association of the emergence of the dominant epitope-specific response with early viral containment following challenge suggests that this immune response played a role in the accelerated clearing of early viremia in these animals. The later emerging CTL response specific for the subdominant epitope may contribute to the control of viral replication in the setting of chronic infection.  相似文献   

6.
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these 'escape mutants' to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings.  相似文献   

7.
Given the role of the CD4 T helper cells in the development of memory CTL precursors, it seems beneficial to boost the CD4 T helper response in the context of vaccination against the human immunodeficiency virus (HIV). However, CD4 T cells are also the preferred targets of infection by HIV. Here, we address the question as to whether it is advantageous to stimulate the CD4 T helper cell response, as this will increase the pool of potential target cells of infection. To do so we formulated a mathematical model describing the interactions between virus-infected cells, susceptible cells, HIV-specific CD4 helper T cells, and CTL precursor (CTLp) and effector cells (CTLe). The effect of increased initial CD4 helper and CTLp numbers on the outcome of infection, as well as the effect on viral set point of increased CD4 T helper growth rate, CTL responsiveness and the rate at which CTLp and CTLe are produced were studied. We found that only when the virus has a low basic reproductive number does the number of CTLp and CD4 T helper cells at the moment of infection influence the outcome of infection. In this situation, high initial T helper and CTL numbers can switch the outcome from full-blown infection to virus control. However, this holds for virus with infectivity in a limited range, and current estimates of virus infectivity suggest that it is higher. In that case, only a vaccination protocol that increases CTL responsiveness, ideally in combination with the rate of production of CD4 T helper cells, may offer a solution as it can reduce the viral set point considerably. If brought under a certain level, the viral population might be unable to replicate any further. However, changing these parameters of the immune response is only beneficial when infection is controlled by CTL in the long term. When a CD4 lymphoproliferative response is mounted but the CTL response is not maintained, increasing the CD4 T helper growth rate is deleterious.  相似文献   

8.
Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naïve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection.  相似文献   

9.
Cytotoxic T lymphocytes (CTL) target multiple epitopes in human immunodeficiency virus (HIV)-infected persons, and are thought to influence the viral set point. The extent to which HLA class I allele expression predicts the epitopes targeted has not been determined, nor have the relative contributions of responses restricted by different class I alleles within a given individual. In this study, we performed a detailed analysis of the CTL response to optimally defined CTL epitopes restricted by HLA class I A and B alleles in individuals who coexpressed HLA A2, A3, and B7. The eight HIV-1-infected subjects studied included two subjects with acute HIV infection, five subjects with chronic HIV infection, and one long-term nonprogressor. Responses were heterogeneous with respect to breadth and magnitude of CTL responses in individuals of the same HLA type. Of the 27 tested epitopes that are presented by A2, A3, and B7, 25 were targeted by at least one person. However, there was wide variation in the number of epitopes targeted, ranging from 2 to 17. The A2-restricted CTL response, which has been most extensively studied in infected persons, was found to be narrowly directed in most individuals, and in no cases was it the dominant contributor to the total HIV-1-specific CTL response. These results indicate that HLA type alone does not predict CTL responses and that numerous potential epitopes may not be targeted by CTL in a given individual. These data also provide a rationale for boosting both the breadth and the magnitude of HIV-1-specific CTL responses by immunotherapy in persons with chronic HIV-1 infection.  相似文献   

10.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

11.
To address the issue of clonal exhaustion in humans, we monitored HLA class I-restricted, epitope-specific CTL responses in an in utero HIV-1-infected infant from 3 mo through 5 years of age. Serial functional CTL precursor assays demonstrated persistent, vigorous, and broadly directed HIV-1 specific CTL activity with a dominant response against an epitope in HIV-1 Gag-p17 (SLYNTVATL, aa 77-85). A clonal CTL response directed against the immunodominant, HLA-A*0201-restricted epitope was found to persist over the entire observation period, as shown by TCR analysis of cDNA libraries generated from PBMC. The analysis of autologous viral sequences did not reveal any escape mutations within the targeted epitope, and viral load measurement indicated ongoing viral replication. Furthermore, inhibition of viral replication assays indicated that the epitope was properly processed from autologous viral protein. These data demonstrate that persistent exposure to high levels of viral Ag does not necessarily lead to clonal exhaustion and that epitope-specific clonal CTL responses induced within the first weeks of life can persist for years without inducing detectable viral escape variants.  相似文献   

12.
Mutations that allow SIV/HIV to avoid the cytotoxic T lymphocyte (CTL) response are well documented. Recently, there have been a few attempts at estimating the costs of CTL escape mutations in terms of the reduction in viral fitness and the killing rate at which the CTL response specific to one viral epitope clears virus-infected cells. Using a mathematical model we show that estimation of both parameters depends critically on the underlying changes in the replication rate of the virus and the changes in the killing rate over time (which in previous studies were assumed to be constant). We provide a theoretical basis for estimation of these parameters using in vivo data. In particular, we show that 1) by assuming unlimited virus growth one can obtain a minimal estimate of the fitness cost of the escape mutation, and 2) by assuming no virus growth during the escape, one can obtain a minimal estimate of the average killing rate. We also discuss the conditions under which better estimates of the average killing rate can be obtained.  相似文献   

13.
The CTL response was characterized during primary SIV/macaque (SIVmac) infection of rhesus monkeys to assess its role in containing early viral replication using both an epitope-specific functional and an MHC class I/peptide tetramer-binding assay. The rapid expansion of a single dominant viral epitope-specific CTL population to 1.3-8.3% of circulating CD8+ peripheral blood and 0. 3-1.3% of lymph node CD8+ T cells was observed, peaking at day 13 following infection. A subsequent decrease in number of these cells was then demonstrated. Interestingly, the percent of tetramer-binding CD8+ T cells detected in the lymph nodes of all evaluated animals was smaller than the percent detected in PBL. These epitope-specific CD8+ T cells expressed cell surface molecules associated with memory and activation. Early clearance of SIVmac occurred coincident with the emergence of the CTL response, suggesting that CTL may be important in containing virus replication. A higher percent of annexin V-binding cells was detected in the tetramer+ CD8+ T cells (range, from 33% to 75%) than in the remaining CD8+ T cells (range, from 3.3% to 15%) at the time of maximum CTL expansion in all evaluated animals. This finding indicates that the decrease of CTL occurred as a result of the death of these cells rather than their anatomic redistribution. These studies provide strong evidence for the importance of CTL in containing AIDS virus replication.  相似文献   

14.
In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.  相似文献   

15.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.  相似文献   

16.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

17.
Strong competition between cytotoxic T-lymphocytes (CTLs) specific for different epitopes in human immunodeficiency virus (HIV) infection would have important implications for the design of an HIV vaccine. To investigate evidence for this type of competition, we analysed CTL response data from 97 patients with chronic HIV infection who were frequently sampled for up to 96 weeks. For each sample, CTL responses directed against a range of known epitopes in gag, pol and nef were measured using an enzyme-linked immunospot assay. The Lotka–Volterra model of competition was used to predict patterns that would be expected from these data if competitive interactions materially affect CTL numbers. In this application, the model predicts that when hosts make responses to a larger number of epitopes, they would have diminished responses to each epitope and that if one epitope-specific response becomes dramatically smaller, others would increase in size to compensate; conversely if one response grows, others would shrink. Analysis of the experimental data reveals results that are wholly inconsistent with these predictions. In hosts who respond to more epitopes, the average epitope-specific response tends to be larger, not smaller. Furthermore, responses to different epitopes almost always increase in unison or decrease in unison. Our findings are therefore inconsistent with the hypothesis that there is competition between CTL responses directed against different epitopes in HIV infection. This suggests that vaccines that elicit broad responses would be favourable because they would direct a larger total response against the virus, in addition to being more robust to the effects of CTL escape.  相似文献   

18.
Investigating escape mechanisms of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTLs) is essential for understanding the pathogenesis of HIV-1 infection and developing effective vaccines. To study the processing and presentation of known CTL epitopes, we prepared Epstein-Barr virus-transformed B cells that endogenously express the gag gene of six field isolates by adopting an env/nef-deletion HIV-1 vector pseudotyped with vesicular stomatitis virus G protein and then tested them for the recognition by Gag epitope-specific CTL lines or clones. We observed that two field variants, SLFNTVAVL and SVYNTVATL, of an A*0201-restricted Gag CTL epitope SLYNTVATL, and three field variants, KYRLKHLVW, QYRLKHIVW, and RYRLKHLVW, of an A24-restricted Gag CTL epitope KYKLKHIVW escaped from being killed by the CTL lines, despite the fact that they were recognized when the synthetic peptides corresponding to these variant sequences were exogenously loaded onto the target cells. Thus, their escape is likely due to the changes that occur during the processing and presentation of epitopes in the infected cells. Mutations responsible for this mode of escape were located within the epitope regions rather than the flanking regions, and such mutations did not influence the virus replication. The results suggest that the impaired antigen processing and presentation often occur in HIV-1 field isolates and thus are one of the major mechanisms that enable HIV-1 to escape from CTL recognition. We emphasize the importance of testing HIV-1 variants in an endogenous expression system.  相似文献   

19.
A very important question in immunology is to determine which factors decide whether an immune response can efficiently clear or control a viral infection, and under what circumstances we observe persistent viral replication and pathology. This paper summarizes how mathematical models help us gain new insights into these questions, and explores the relationship between antiviral therapy and long-term immunological control in human immunodeficiency virus (HIV) infection. We find that cytotoxic T lymphocyte (CTL) memory, defined as antigen-independent persistence of CTL precursors, is necessary for the CTL response to clear an infection. The presence of such a memory response is associated with the coexistence of many CTL clones directed against multiple epitopes. If CTL memory is inefficient, then persistent replication can be established. This outcome is associated with a narrow CTL response directed against only one or a few viral epitopes. If the virus replicates persistently, occurrence of pathology depends on the level of virus load at equilibrium, and this can be determined by the overall efficacy of the CTL response. Mathematical models suggest that controlled replication is reflected by a positive correlation between CTLs and virus load. On the other hand, uncontrolled viral replication results in higher loads and the absence of a correlation between CTLs and virus load. A negative correlation between CTLs and virus load indicates that the virus actively impairs immunity, as observed with HIV. Mathematical models and experimental data suggest that HIV persistence and pathology are caused by the absence of sufficient CTL memory. We show how mathematical models can help us devise therapy regimens that can restore CTL memory in HIV patients and result in long-term immunological control of the virus in the absence of life-long treatment.  相似文献   

20.
HIV evolution: CTL escape mutation and reversion after transmission   总被引:24,自引:0,他引:24  
Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号