首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Daws  C J Lim    J A Fuchs 《Journal of bacteriology》1989,171(9):5218-5221
The Escherichia coli structural gene for glutathione synthetase, gshB, was cloned into pBR322. Plasmids containing gshB were able to complement the glutathione requirement of a trxA gshB double mutant, and cells containing the plasmids were found to have elevated levels of glutathione synthetase. A mutant gshB allele was constructed by inserting the kan gene from pUC4K into a unique HpaI site located within gshB. The resulting plasmid-encoded allele was used to replace a genomic gshB+ by homologous recombination. The resulting strain had no detectable glutathione synthetase activity. The gshB allele containing the kan insertion was used to map gshB on the E. coli chromosome by P1 transduction. The results indicated that gshB is located at 63.4 min, between metK and speC. The allele was further localized to a region of 3,100 to 3,120 kilobase pairs on the physical map (restriction map) of E. coli by DNA-DNA hybridization to a series of lambda bacteriophages (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987).  相似文献   

2.
Cameron JC  Pakrasi HB 《Plant physiology》2010,154(4):1672-1685
Glutathione, a nonribosomal thiol tripeptide, has been shown to be critical for many processes in plants. Much less is known about the roles of glutathione in cyanobacteria, oxygenic photosynthetic prokaryotes that are the evolutionary precursor of the chloroplast. An understanding of glutathione metabolism in cyanobacteria is expected to provide novel insight into the evolution of the elaborate and extensive pathways that utilize glutathione in photosynthetic organisms. To investigate the function of glutathione in cyanobacteria, we generated deletion mutants of glutamate-cysteine ligase (gshA) and glutathione synthetase (gshB) in Synechocystis sp. PCC 6803. Complete segregation of the ΔgshA mutation was not achieved, suggesting that GshA activity is essential for growth. In contrast, fully segregated ΔgshB mutants were isolated and characterized. The ΔgshB strain lacks reduced glutathione (GSH) but instead accumulates the precursor compound γ-glutamylcysteine (γ-EC). The ΔgshB strain grows slower than the wild-type strain under favorable conditions and exhibits extremely reduced growth or death when subjected to conditions promoting oxidative stress. Furthermore, we analyzed thiol contents in the wild type and the ΔgshB mutant after subjecting the strains to multiple environmental and redox perturbations. We found that conditions promoting growth stimulate glutathione biosynthesis. We also determined that cellular GSH and γ-EC content decline following exposure to dark and blue light and during photoheterotrophic growth. Moreover, a rapid depletion of GSH and γ-EC is observed in the wild type and the ΔgshB strain, respectively, when cells are starved for nitrate or sulfate.  相似文献   

3.
The isolation of rhizobial strains which exhibit an intrinsic tolerance to acidic conditions has been reported and has facilitated studies on the basic mechanisms underlying acid tolerance. Rhizobium tropici strain CIAT899 displays a high intrinsic tolerance to acidity and therefore was used in this work to study the molecular basis of bacterial responses to acid conditions and other environmental stresses. We generated a collection of R. tropici CIAT899 mutants affected in acid tolerance using Tn5-luxAB mutagenesis, and one mutant strain (CIAT899-13T2), which fails to grow under acid conditions, was characterized in detail. Strain CIAT899-13T2 was found to contain a single Tn5-luxAB insertion in a gene showing a high degree of similarity with the Escherichia coli gshB gene, encoding the enzyme glutathione synthetase. Intracellular potassium pools and intracellular pH levels were found to be lower in the mutant than in the parent. The glutathione-deficient mutant was shown to be sensitive to weak organic acids, osmotic and oxidative stresses, and the presence of methylglyoxal. Glutathione restores responses to these stresses almost to wild-type levels. Our data show that in R. tropici the production of glutathione is essential for growth in extreme environmental conditions. The mutant strain CIAT899-13T2 induced effective nodules; however, it was found to be outcompeted by the wild-type strain in coinoculation experiments.  相似文献   

4.
Rhizobia form a symbiotic relationship with plants of the legume family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We have examined the importance of glutathione (GSH) during free-living growth and symbiosis of Sinorhizobium meliloti. An S. meliloti mutant strain (SmgshA) which is unable to synthesize GSH due to a gene disruption in gshA, encoding the enzyme for the first step in the biosynthesis of GSH, was unable to grow under nonstress conditions, precluding any nodulation. In contrast, an S. meliloti strain (SmgshB) with gshB, encoding the enzyme involved in the second step in GSH synthesis, deleted was able to grow, indicating that gamma-glutamylcysteine, the dipeptide intermediate, can partially substitute for GSH. However, the SmgshB strain showed a delayed-nodulation phenotype coupled to a 75% reduction in the nitrogen fixation capacity. This phenotype was linked to abnormal nodule development. Both the SmgshA and SmgshB mutant strains exhibited higher catalase activity than the wild-type S. meliloti strain, suggesting that both mutant strains are under oxidative stress. Taken together, these results show that GSH plays a critical role in the growth of S. meliloti and during its interaction with the plant partner.  相似文献   

5.
张亚妮  卫阳 《微生物学报》2009,49(5):603-608
摘要: 【目的】研究谷胱甘肽对铜绿假单胞菌exoS和exoY基因表达的影响。【方法】利用丁硫氨酸亚砜胺和马来酸二乙酯同时耗竭细胞内的谷胱甘肽,并构建包含被lacZGm破坏的谷胱甘肽合成酶基因的突变体。通过分别连有exoS 和exoY基因启动子的pMS402质粒上Lux报道子发光值大小检测exoS 和exoY基因表达变化情况。【结果】exoS和exoY基因的表达在用化学药品耗竭的细胞中或是在谷胱甘肽合成酶突变体中都降低。【结论】铜绿假单胞菌细胞内的谷胱甘肽可以促进exoS和exoY的表达。这将为进一步研究铜绿假单胞菌的感染以及致病性机理提供一定的理论基础。  相似文献   

6.
A mutant of Escherichia coli that contains essentially no detectable glutathione has been isolated. The mutant contains a very low level of the enzyme glutathione synthetase and accumulates lambda-glutamyl cysteine at a concentration approximately equal to the level of glutathione found in its parent. No significant differences in growth were observed between the mutant and its parent. However, the activity of at least one enzyme was found to be affected by the absence of glutathione; the specific activity of the B1 subunit of ribonucleoside diphosphate reductase was greatly reduced. The possibility that the decreased B1 activity is due to a mutation in the structural gene coding for B1 or its regulatory gene could be eliminated. This suggests that one role of glutathione in the cell is to maintain at least this one protein in an active state. We propose the designation gshB for the gene coding for glutathione synthetase.  相似文献   

7.
8.
High-performance liquid chromatography (HPLC) with fluorescence detection was used to study thiol metabolism in legume nodules. Glutathione (GSH) was the major non-protein thiol in all indeterminate nodules examined, as well as in the determinate nodules of cowpea (Vigna unguiculata), whereas homoglutathione (hGSH) predominated in soybean (Glycine max), bean (Phaseolus vulgaris), and mungbean (Vigna radiata) nodules. All nodules had greater thiol concentrations than the leaves and roots of the same plants because of active thiol synthesis in nodule tissue. The correlation between thiol tripeptides and the activities of glutathione synthetase (GSHS) and homoglutathione synthetase (hGSHS) in the nodules of eight legumes, and the contrasting thiol contents and activities in alfalfa (Medicago sativa) leaves (98% hGSH, 100% hGSHS) and nodules (72% GSH, 80% GSHS) indicated that the distribution of GSH and hGSH is determined by specific synthetases. Thiol contents and synthesis decreased with both natural and induced nodule senescence, and were also reduced in the senescent zone of indeterminate nodules. Thiols and GSHS were especially abundant in the meristematic and infected zones of pea (Pisum sativum) nodules. Thiols and gamma-glutamylcysteinyl synthetase were also more abundant in the infected zone of bean nodules, but hGSHS was predominant in the cortex. Isolation of full-length cDNA sequences coding for gamma-glutamylcysteinyl synthetase from legume nodules revealed that they are highly homologous to those from other higher plants.  相似文献   

9.
A mutagenesis program using ethylmethane sulfonate on Medicago truncatula Gaertn cv Jemalong, an annual, autogamous and diploid lucerne, permitted the isolation of a mutant (TE7) unable to establish an effective nitrogen-fixing symbiosis, [Nod+Fix-], with Rhizobium meliloti wild-type strains. The mutant phenotype is characterized by an altered infection process that leads to the formation of two kinds of inefficient nodules on the same root system. A certain proportion of the nodules are small, round, and uninfected, with infection threads limited to the outer root cortical cells. Others develop to a normal elongated shape and are infected; bacterial release occurs but the bacteria do not differentiate into bacteroids. The ratio of invaded to uninvaded nodules depends on the bacterial strain used. Throughout the infection process, certain events correlated with the plant defense response against pathogens can be observed: (a) the presence of polyphenolic compounds associated with the walls of infected cells and also with some parts of infection threads in the root cortex; (b) appositions on infection thread walls during the early stage of infection and also within the central tissue of infected nodules; and (c) autophagy of the plant cells that contain released bacteria. Genetic data suggest that the phenotype of TE7 is under monogenic and recessive control; this gene has been designated Mtsym1.  相似文献   

10.
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus , cerberus , which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti . Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.  相似文献   

11.
Summary In eukaryotic organisms ferritin is a protein involved in the storage of iron. The occurrence of ferritin and its relationship to the effectiveness of the nitrogen-fixing activity have been previously studied during the early stages of the nodule development by biochemical methods. We have used immunocytochemistry techniques to determine the precise location of ferritin and the behavior of this protein along the nodule development. The major localization was found in plastids and amyloplasts of infected and uninfected cells of the three legume nodules studied. A decrease of the immunolabelling was observed in infected cells of lupin and soybean senescing nodules and in the senescent zone of indeterminate alfalfa nodules. In the cortex of soybean and lupin nodules, ferritin increased during nodule ageing and the immunogold particles were mainly located in crystalline structures. The putative role of ferritin and plastids during nodule development is discussed.  相似文献   

12.
Zhu L  Dong H  Zhang Y  Li Y 《Metabolic engineering》2011,13(4):426-434
To improve the aero- and solvent tolerance of the solvent-producing Clostridium acetobutylicum, glutathione biosynthetic capability was introduced into C. acetobutylicum DSM1731 by cloning and over-expressing the gshAB genes from Escherichia coli. Strain DSM1731(pITAB) produces glutathione, and shows a significantly improved survival upon aeration and butanol challenge, as compared with the control. In addition, strain DSM1731(pITAB) exhibited an improved butanol tolerance and an increased butanol production capability, as compared with the recombinant strains with only gshA or gshB gene. These results illustrated that introducing glutathione biosynthetic pathway, which is redundant for the metabolism of C. acetobutylicum, can increase the robustness of the host to achieve a better solvent production.  相似文献   

13.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

14.
Summary Using a series of antibody probes as markers of symbiosome development, we have investigated the impaired development of symbiosomes in nodules formed by the plant mutant line Sprint2Fix (sym31). In wild-type pea (Pisum sativum L.) nodules, bacteria differentiate into large pleiomorphic, nitrogen-fixing bacteroids and are singly enclosed within a peribacteroid membrane. In thesym31 mutant, several small undifferentiated bacteroids were often enclosed within one peribacteroid membrane, or were found within a vacuole-like compartment. In wild-type nodules, the monoclonal antibody JIM18, which recognizes a plasmalemma glycolipid antigen, bound to the juvenile peribacteroid membrane, and did not recognize the mature peribacteroid membrane. However, in the mutant, the antibody bound to all peribacteroid membranes within the nodule, suggesting that differentiation of the peribacteroid membrane was arrested. Another antibody, MAC266, recognized plant glycoproteins which normally accumulate in symbiosomes at a late stage of nodule development. Binding of this antibody was much reduced within mutant nodules, labelling only a few mature cells. Similarly, MAC301, which normally recognizes a lipopolysaccharide epitope expressed on differentiated bacteroids prior to the induction of nitrogenase, failed to react with rhizobial cell extracts isolated from nodules of thesym31 mutant. On the basis of these developmental markers, the symbiosomes ofsym31 nodules appeared to be blocked at an early stage of development. The distribution of infection structures was also found to be abnormal in the mutant nodules. Models of symbiosome development are presented and discussed in relation to the morphological and developmental lesions observed in thesym31 mutant.  相似文献   

15.
Ineffective alfalfa nodules formed by Rhizobium meliloti nif::Tn5 mutants were examined by light and electron microscopy. R. meliloti nifH::Tn5 mutants formed nodules that were similar in structure to wild-type nodules except that nifH- bacteroids accumulated a compact, electron-dense body. In contrast to nodules induced by wild type and nifH mutants, nifDK- R. meliloti mutants induced nodules which contained numerous starch grains and prematurely senescent bacteroids. In addition, meristematic activity in nifDK- nodules ceased significantly earlier than in nifH- nodules. All mutant nodules exhibited elevated levels of rough endoplasmic reticulum and Golgi membranes compared to wild-type nodule cells. These elevated levels may reflect either a response to nitrogen starvation in the ineffective nodules or an abnormal synthesis and export of nodule-specific proteins during later developmental stages.  相似文献   

16.
Mutation of the sid gene in Festuca pratensis prevents chlorophyll degradation. The senescing leaves retain their chlorophyll complement and stay green. Nevertheless, CO2 assimilation and ribulose-bisphosphate carboxylase/oxygenase content decline in both mutant and wild-type plants. Photosynthesis and chlorophyll a fluorescence measurements were performed in air and at low oxygen to prevent photorespiration. The maximum extractable activity of ribulose 1,5 bisphosphate carboxylase was higher in the senescent mutant leaves than in those of the wild-type control hut Mas much lower than that observed in the mature leaves of either genotype. The activation state of this enzyme was similar in mutant and wild-type lines at equivalent stages of development. Analysis of chlorophyll a fluorescence quenching with varying irradianco showed similar characteristics for mature leaves of the two genotypes. Genotypic variations in photosystem II (I'SII) efficiency were observed only in the senescent leaves. Photochemical quenching and the quantum efficiency of PSII were greater in the senescent mutant leaves than in (he wild type at a given irradiance. The calculated electron flux through PSII was substantially higher in the mutant with a greater proportion of electrons directed to photorespiration. Maximum catalytic activities of ascorbate peroxidase decreased in senescent compared to mature leaves of both genotypes, while glutathione reductase and monodehydroascorbate reductase were unchanged in both cases. Superoxide dismutase activity was approximately doubled and dehydroascorbate reductase activity was three times higher in senescent leaves compared with the mature leaves of both genotypes. In no case was there a difference in enzyme activities between mutant and wild type at equivalent growth stages. The pool of reduced ascorbate was similar in the mature leaves of the two genotypes, whereas it was significantly higher in the senescent leaves of the mutant compared with the wild type. Conversely, the hydrogen peroxide content was significantly higher in the mature leaves of the wild type than in those of the mutant, but in senescent leaves similar values were obtained. In leaves subjected to chilling stress the reduced ascorbate pool was higher in both mature and senescent leaves of the mutant than in their wild-type counterparts. Similarly, the hydrogen peroxide pool was significantly lower in both mature and senescent leaves of the mutant than in the wild type. We conclude that, in spite of deceased CO2 assimilation, the mutant is capable of high rates of electron Slow. The high ascorbate/hydrogen peroxide ratio observed in the mutant, particularly at low temperatures, suggests that the senescent leaves are not subject to enhanced oxidative stress.  相似文献   

17.
The Lotus japonicus sen1 mutant forms ineffective nodules in which development is arrested at the stage of bacterial differentiation into nitrogen-fixing bacteroids. Here, we used cDNA macroarray systems to compare gene expression in ineffective nodules induced on the sen1 mutant with gene expression in wild-type nodules, in order to identify the host plant genes that are involved in nitrogen fixation. Macroarray analysis coupled with Northern blot analysis revealed that the expression of 18 genes was significantly enhanced in ineffective sen1 nodules, whereas the expression of 30 genes was repressed. Many of the enhanced genes encoded hydrolase enzymes, such as cysteine proteinase and asparaginase, that might function in the early senescence of sen1 nodules. By contrast, the repressed genes encoded nodulins, enzymes that are involved in carbon and nitrogen metabolism, membrane transporters, enzymes involved in phytohormone metabolism and secondary metabolism, and regulatory proteins. These proteins might have a role in the establishment of nitrogen fixation. In addition, we discovered two novel genes that encoded glutamate-rich proteins and were localized in the vascular bundles of the nodules. The expression of these genes was repressed in the ineffective nodules, which had lower levels of nitrogenase activity.  相似文献   

18.
羊奶果不同发育阶段根瘤的细胞结构及固氮、吸氢活性   总被引:1,自引:0,他引:1  
比较羊奶果根瘤三个不同发育阶段的显微,亚显微结构和固氮,吸氢活性的差异。探讨了根瘤结构与功能的关系。结果表明:早期侵染方式为皮层细胞间隙侵染,此期的内生菌是一种分枝,具隔膜的菌丝体,早期侵染细胞有脂体存在。成熟根瘤含菌细胞明显多于幼瘤和衰老瘤。成熟根瘤具有大量泡囊,成熟泡囊具分隔,双层壁结构。衰老瘤泡囊分隔消失,不呈双层壁结构。成熟根瘤的固氮,吸氢活性明显高于幼瘤和衰老瘤。  相似文献   

19.
20.
Effective (nitrogen-fixing) root nodules of Oxytropis maydelliana Trautv., O. arctobia Bunge and Astragulus alpinus L. were collected in the high Arctic tundra and subsequently processed for structural studies. The cylindrically-shaped perennial nodules consisted of the following tissues: nodule cortex, nodule meristem, nodular vascular bundles, an active central region with uninfected and infected cells at various stages of development, and a proximal region of senescent cells. The active central region was dark red-coloured due to the presence of the pigment leghemoglobin. The host cells became infected by the growth of infection threads into cells recently derived from the nodule meristem and the subsequent endocytotic release of rhizobia from unwalled membrane-bound regions of the infection thread. The host plasma membrane adjacent to the unwalled regions of infection thread gave rise to the peribacteroid membrane which surrounded the released bacteria. Thus, nodule development and the basic tissue arrangement of the arctic nodules was similar to that of cylindrically-shaped nodules formed on temperate species of legumes.
The arctic legume nodules are unique in having large numbers of lipid droplets present in the cytoplasm of the nodule cortex and uninfected cells of the central active region. Newly infected cells also have lipid droplets. More developed infected cells lack lipid droplets but often contain amyloplasts. Mature differentiated bacteria were spherically-shaped and contained electron-dense inclusions. Electron-dense material was also present in vesicles formed from dilated endoplasmic reticulum and in the peribacteroid space. The lipid droplets present in the host cytoplasm of the nodule cortex and uninfected cells of the central tissue may be storage products which are used to support nitrogen-fixation in nodules growing under cool temperatures of this harsh environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号