首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

2.
3.
4.
miRNAs are critically implicated in the initiation process of and progression through cancerogenesis. The mechanisms, however, by which miRNAs interfere with the signalosomes of human cancer cells, are still obscure. We utilized the p53-mutated human keratinocyte cell line HACAT to investigate the biological significance and extent to which miRNAs regulate proliferation, cell growth, and apoptosis in transformed phenotypes. Silencing of the miRNA-processing enzyme Dicer1 resulted in cell cycle arrest at the G1/S border, along with restoration of CDK inhibitor p21CIPexpression. Employing a cell cycle-wide phospho-proteomic approach, we detected neglectable changes in abundance and schedule of overall and cell cycle periodic protein expression despite cell cycle arrest of Dicer1-depleted cells. Instead, we found substantially delayed post-translational modifications of some, but not all, signaling nodes. Phospho-site-specific analyses revealed that pro-apoptotic information elicited by Myc, β-catenin, and other mitotic pathways early in G1 are absorbed and balanced by anti-apoptotic signaling from AKT and NFκB in Dicer1-competent cells. The absence of regulatory miRNAs, however, led to a substantial delay of anti-apoptotic signaling, leaving pro-apoptotic stress unbalanced in Dicer1-deprived cells. We here show that this temporal separation of pro- and anti-apoptotic signaling induced by inhibition of Dicer1 is synergistic and synthetic lethal to low-dose 5-FU chemotherapy in p53-mutated HACAT cells. The findings reported here contribute to the understanding of the complex interactions of miRNAs with the signalosom of transformed phenotypes and may help to design novel strategies to fight cancer.  相似文献   

5.
Kan Q  Jinno S  Yamamoto H  Okayama H 《FEBS letters》2007,581(30):5879-5884
When cells progressing in G1 phase are irradiated with UV light, two damage checkpoint pathways are activated: CHK1-Cdc25A and p53-p21WAF1/CIP1, both targeting Cdk2 but the latter inducing long lasting inactivation. In similarly irradiated S phase cells, however, p21WAF1/CIP1-dependent checkpoint is largely inactive. We report here that p21-dependent checkpoint can effectively be activated and induce a prolonged S phase arrest with similarly extended inactivation of Cdk2 by association of p21 if mid-S phase cells are damaged with a base-modifying agent instead of UV light, indicating that the poor utilization of p21-dependent checkpoint is not an innate property of S phase cells.  相似文献   

6.
Cellular responses following DNA damage are ubiquitous in the biological world. In response to DNA damage, cell cycle checkpoints are activated, which delay cell cycle progression and most likely serve to allow time for repair. One important checkpoint in mammalian cells, activated in the G1 phase of the cell cycle, is dependent on the p53 tumor suppressor gene product. While p53 is responsible for inducing G1 arrest, the product of the MDM2 gene is believed to alleviate the arrest, allowing continuation of the cell cycle after a transient delay. Inasmuch as MDM2 and WAF1/CIP1 are transactivated by p53, while MDM2 binds to and modulates the activity of p53, a "feedback loop" is thus created. This pathway has been highly conserved in mammalian cells, but its presence outside of vertebrates is unknown. By using human MDM2 and WAF1/CIP1 cDNA probes, and monoclonal antibodies to p53 and Mdm2, we demonstrate in insect cell lines evidence for the existence of p53-, MDM2-, and WAF1/CIP1 -like molecules and a p53-regulated pathway following treatment by DNA-damaging agents.  相似文献   

7.
8.
9.
Summary 1. Colostrinin (CLN) induces maturation and differentiation of murine thymocytes, promotes proliferation of peripheral blood leukocytes, induces immunomodulator cytokines, and ameliorates oxidative stress-mediated activation of c-Jun NH2-terminal kinases. 2. Here we report that upon treatment with CLN, medullary pheochromocytoma (PC12) cells ceased to proliferate and extend neurites. 3. The arrest of CLN-treated PC12 cells in the G1 phase of the cell cycle was due to an increase in the phosphorylation of p53 at serine15 (p53ser15) and expression of p21WAF1. PC12 cells treated with inhibitory oligonucleotides to p53 lacked p53ser15 and p21WAF1 expression, and did not show morphological changes after CLN exposure. Transfection with inhibitory oligonucleotides to p21WAF1 had no effect on p53 activation; however, cells failed to arrest or extend neurites. An oligonucleotide inhibiting luciferase expression had no effect on CLN-mediated p53 activation, p21WAF1 expression, growth arrest, or neurite outgrowth. 4. We conclude that CLN induces delicate cassettes of signaling pathways common to cell proliferation and differentiation, and mediates activities that are similar to those of hormones and neurotrophins, leading to neurite outgrowth.  相似文献   

10.
食管鳞状细胞癌(Esophageal squamous cell carcinoma, ESCC)是我国常见的恶性肿瘤之一, 虽然临床诊治手段正逐步改进, 但中晚期患者5年生存率仍然很低。目前认为细胞周期调控异常与肿瘤发生发展关系密切, 然而相关周期调节蛋白在食管癌患者中的表达改变、临床意义及其应用价值还没有明确结论。文章应用组织微阵列联合免疫组织化学技术(TMA-IHC), 对148例食管鳞癌组织标本中细胞G1/S期调控蛋白cyclin D1、p53和p21WAF1/Cip1的表达进行检测, 分析其与临床病理参数之间的相关性。结果显示, cyclin D1与p53蛋白在食管癌细胞中表达升高, p53表达阳性率与区域淋巴结转移显著相关(P = 0.001)。p21WAF1/Cip1蛋白在肿瘤组织中表达降低, 且p21WAF1/Cip1表达阴性患者的术后生存时间显著短于表达阳性的患者(P = 0.001)。多因素生存分析显示p21WAF1/Cip1是一个独立的预后因素(相对危险度为0.418, P<0.001)。微阵列比较基因组杂交(array-CGH)检测进一步表明45.4%的食管癌患者存在cyclin D1基因扩增。以上结果提示食管鳞癌中存在细胞周期G1/S期调控异常, p21WAF1/Cip1蛋白可能是一个有应用价值的预后因子。  相似文献   

11.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

12.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

13.
14.
Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action.  相似文献   

15.
16.
17.
18.
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/− fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.  相似文献   

19.
TP53基因(编码p53蛋白)作为一个重要的抑瘤基因,通过调控一系列信号转导通路广泛参与了多种恶性肿瘤的发生发展,一直是肿瘤分子生物学研究领域的热点.最近的研究发现,microRNAs(miRNAs)参与了TP53的信号通路,它们之间存在着复杂的调控网络.一方面,p53通过调控一些miRNAs的转录及转录后成熟,促进细胞周期阻滞、诱导细胞凋亡和衰老,抑制肿瘤发生.另一方面,许多miRNAs,如miR-25、miR-30d、miR-125b和miR-504等可直接调控p53的表达与活性,参与TP53信号通路的调节,还有一些miRNAs则通过调节p53上下游基因,发挥重要的生物学功能.其中,最具有代表性的是miR-34家族,它们受p53直接调控并参与TP53信号通路,通过靶向抑制多个TP53信号通路关键分子的表达,发挥抑瘤作用.此外,它们还可以通过抑制沉默信息调节子,增强p53的活性,反馈调节TP53信号通路.miRNAs与TP53之间调控网络的研究,是对TP53抑瘤机制的重要补充.  相似文献   

20.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号