首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
Summary A highly sensitive and specific monoclonal antibody against the enzyme dopamine -hydroxylase (DBH) from rat was produced and coded DBH 41. The generated hybridoma secreted immunoglobulins of mouse IgG1 subtype, as determined by radial immunodiffusion. This antibody, characterized by immunoblotting against a crude rat DBH preparation, was found to specifically recognize two bands of molecular weight 70 and 75 kDa corresponding to the soluble and membrane bound forms of the enzyme, respectively. With regard to species specificity, the anti-DBH antibody recognizes only the rat DBH molecule as it exhibits no cross-reactivity with either mouse, human, rabbit, guinea pig, cat or bovine DBH. Comparative immunocytochemical localization of DBH and TOH immunoreactivity was performed in different brain regions and we found that the DBH 41 antibody specifically stained DBH-containing neurons and fibers in the rat central nervous system (CNS). The high sensitivity of the DBH 41 antibody permitted us to detect immunologically the presence of the enzyme even in areas where only scattered DBH-containing fibers were present.  相似文献   

2.
The rapid bidirectional transport of dopamine beta-hydroxylase (DBH) in adrenergic axons provides a means of analyzing the life cycle of adrenergic storage vesicles. We compared the physical characteristics of DBH-containing particles traveling to or returning from the terminal varicosities of ligated rat sciatic nerves. Density gradient centrifugation and Sephacryl S1000 gel-permeation chromatography were used to fractionate extracts from nerve segments proximal or distal to the ligatures. A series of experiments indicated the existence of at least two populations of rapidly transported DBH-containing particles, a "light" 85-nm particle and a larger "dense" 120-nm particle. The 85-nm particles were prevalent in unligated nerve, but accounted for only one-third of the total anterogradely transported DBH activity accumulated after 18 h. The 120-nm particles were barely detectable in the unligated nerve, but they accumulated at twice the rate of the 85-nm particles and accounted for the rest of the anterogradely transported particulate DBH activity. These two populations of particles were readily isolated from proximal nerve extracts by sucrose density gradient centrifugation. Similar-appearing dense and light peaks of particulate DBH activity were obtained from distal nerve extracts. Much of the retrogradely transported DBH of the extracts, however, was associated with large particles (greater than 300 nm) not resolved by Sephacryl S1000. Retrogradely transported exogenous NGF was found only in the dense sucrose gradient peak. We propose that the 85-nm DBH-containing particles correspond to "large dense-cored vesicles," and that the 120-nm particles are derived from the dense tubules visualized in adrenergic nerves by the chromaffin reaction.  相似文献   

3.
Dopamine-beta-hydroxylase (DBH) was purified from rat adrenal medulla by a series of steps including sedimentation of membranes, extraction with n-butanol, ammonium sulfate fractionation, gel chromatography and ion-exchange chromatography. Disk gel electrophoresis revealed two protein bands, both of which were active. Antiserum was prepared against homogeneously purified bovine adrenal and rat adrenal DBH; Ouchterlony immunodiffusion, enzyme neutralization and complement fixation tests demonstrated that the respective homologous antisera were monospecific and of high titer. Antiserum to bovine DBH was only 2- to 3-fold more potent than pre-immune serum in inhibition of rat DBH activity. Complement fixation tests demonstrate that antiserum to bovine DBH has a 25,000-fold lower immunoreactivity with rat DBH than with bovine DBH.  相似文献   

4.
Ornithine decarboxylase (ODC) was purified about 2,000-fold from the kidney of androgen-treated mice and its molecular properties were examined and compared with those of the enzyme from rat liver. The purified enzyme showed two protein staining bands on SDS-polyacrylamide gel electrophoresis, corresponding to Mr of about 54,000 and 52,000. The apparent Mr of the enzyme determined by gel filtration was 57,000 in the presence of 0.25 M NaCl and 110,000 in its absence. The apparent Km value for L-ornithine was about 0.1 mM in the absence of NaCl and 0.7 mM in the presence of 0.25 M NaCl. Thus, salts appeared to cause subunit dissociation and also an increase in the Km value for the substrate. Putrescine and D-ornithine acted as inhibitors competing with the substrate. Antizyme from the rat liver inhibited the activities of the mouse enzyme and the rat enzyme similarly. The mouse and the rat enzymes exhibited a very similar immunological cross-reactivity to rabbit antibody raised against the mouse enzyme but, when the antibody directed against the rat enzyme was used, the cross-reactivity of the rat enzyme was higher than that of the mouse enzyme. Thus, the molecular properties of mouse ODC were very similar to those of the rat enzyme.  相似文献   

5.
Abstract: Somatostatin (SRIF) induces its diverse physiological actions through interactions with different receptor subtypes. Multiple SRIF receptor subtypes have recently been cloned. To analyze the physical properties of receptor subtype SSTR2, two different peptide-directed antibodies were generated against SSTR2. Antibody “2e3,” directed against the peptide SSCTINWPGESGAWYT (residues 191–206), corresponding to a region in the predicted third extracellular domain of mouse SSTR2, and antibody “2i4,” directed against the peptide SGTEDGERSDS (residues 333–343) from the predicted cytoplasmic tail of mouse SSTR2, were developed. In Chinese hamster ovary (CHO) cells stably expressing the mouse SSTR2 gene (CHOB), the antibody 2e3 recognized specifically a protein of 93-kDa protein by immunoblotting. No specific immunoreactivity was detected by 2e3 in nontransfected CHO cells or CHO cells stably expressing vector alone or human SSTR1 or mouse SSTR3 genes. The antibody 2i4 specifically immunoprecipitated SSTR2 solubilized from CHOB cells that could be labeled with the SSTR2-specific ligand 125I-MK-678. Furthermore, both 2e3 and 2i4 specifically immunoprecipitated 93-kDa [35S]methionine-labeled proteins from CHOB cells, indicating that they recognize the same proteins. In contrast to studies in CHOB cells, immunoblotting studies showed that 2e3 detected specifically a single 148-kDa protein from different regions of the rat brain that have previously been shown to express high levels of SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. In contrast, no immunoreactivity was detected in rat kidney, liver, or lung, which do not express SSTR2. No 93-kDa protein was detected specifically in the rat brain. The 148-kDa protein detected by 2e3 is an SRIF receptor because 2e3 and 2i4 specifically immunoprecipitated solubilized rat brain SRIF receptors that could be reversibly labeled with 125I-MK-678. As in rat brain, 2e3 interacted specifically with a single 148-kDa protein in rat pituitary, in the rat pancreatic cell line AR42J, and in the HEK 293 cell line derived from human kidney, all of which express SSTR2 mRNA and SRIF receptors with high affinity for 125I-MK-678. These findings indicate that rat brain and pituitary, as well as a pancreatic and a kidney cell line, express primarily a form of SSTR2 different from CHOB cells. The multiple forms of SSTR2 may result from differential post-translational processing of SSTR2 because 2e3 immunoprecipitated 41-kDa in vitro translation products generated from mRNA extracted from CHOB and AR42J cells. This 41-kDa protein has the predicted size of unprocessed SSTR2. These results demonstrate that 2e3 and 2i4 antibodies interact specifically with SSTR2. Detection of two different size proteins by the SSTR2 peptide-directed antibodies suggests the existence of multiple forms of SSTR2.  相似文献   

6.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

7.
8.
An antibody against human adrenal dopamine beta-hydroxylase (DBH) was used to quantitate immunoreactive DBH protein in human serum by an immunoprecipitation technique. A significant correlation was found between DBH enzyme activity and immunoreactive DBH protein in randomly selected serum samples (r = 0.94; N = 38; p less than .001). Studies of sera from obligate heterozygotes and individuals homozygous for the allele responsible for very low serum DBH enzymatic activity were compatible with a genetically mediated decrease in the quantity of circulating DBH protein in these subjects.  相似文献   

9.
An anti-peptide antibody has been produced which binds to and specifically inhibits the activity of cytochrome P-450IA2 in rat hepatic microsomes. This was achieved by raising an antibody against a synthetic peptide (Ser-Glu-Asn-Tyr-Lys-Asp-Asn), the sequence of which occurs in cytochrome P-450IA2 at positions 290-296. The selection of this region of cytochrome P-450IA2 was based on several criteria, including prediction of surface and loop areas, identification of variable regions between cytochromes P-450IA2 and P-450IA1, and consideration of a site on cytochrome P-450IA1 where chemical modification has been shown to cause substantial enzyme inactivation. The specificity of antibody binding was determined by enzyme-linked immunosorbent assay and by immunoblotting using hepatic microsomal preparations and purified cytochrome P-450 isoenzymes. This showed that the antibody binds specifically to rat and mouse cytochrome P-450IA2 and to no other cytochrome P-450, as was predicted from the amino acid sequences of the peptide and the cytochromes P-450. The effect of the antibody upon enzyme activity was studied in hepatic microsomes from rats treated with 3-methylcholanthrene. The antibody was shown to inhibit specifically the activity of reactions catalysed by cytochrome P-450IA2 (phenacetin O-de-ethylase and 2-acetylaminofluorene activation), but had no effect on aryl hydrocarbon hydroxylase activity, which is catalysed by cytochrome P-450IA1, or on aflatoxin B1 activation.  相似文献   

10.
Abstract– Rat serum dopamine-β-hydroxylase (DBH) activity decreased 5-7-fold between 15 and 60 days of age. Immunoprecipitation performed with homologous antibody (guinea-pig anti-rat adrenal DBH) showed that during this time period the quantity of antibody necessary to precipitate 50% of the enzymatic activity (AD50) decreased 5-fold from 0.25 to 0.05 μl/ml. The biochemical properties of rat serum DBH at 15 and 60 days of age were compared to test the hypothesis that there might be different biochemical forms of the enzyme in the blood of immature and adult rats. Thermal stability, apparent Km for tyramine, electrophoretic mobility, pH optima and elution profile on gel filtratioh chromatography were all found to be similar for rat serum DBH at both ages. On the basis of homospecific activity and multiple similarities in biochemical characteristics, it appears that differences in serum activity at the two ages reflect differences in the steady-state levels of enzyme. To determine the turnover of serum DBH in the two age groups, the recovery of enzyme activity was monitored after acute clearance of the circulating pool of DBH by treatment with the homologous antiserum. Immunotitration of DBH activity in vivo indicated that the total pool of serum enzyme was 4-fold greater in the mature rat than in 4-day-olds. After treatment of adult rats with 2μl of homologous antiserum, serum DBH activity was reduced by 85% with a half-life of recovery of 3.0 ± 0.6 days; the estimated fractional rate of degradation was 0.23 ± 0.06 day?1 and the rate of entrance was 2.3 ± 0.2 units/ml/day. After treatment of 4-day-old rats with 1 μl of homologous antiserum, serum DBH activity was reduced by 95% with a half-life of recovery of 3.3 ± 0.5 days: the estimated average fractional rate of degradation was 0.22 ± 0.06 day?1 and the average rate of entrance was 10.7 ± 1.6 units/ml/day. Thus, the several-fold difference in steady-state levels of serum DBH in rat pups as compared to adult rats appears to be due to greatly increased rates of entrance of the enzyme in the immature rats.  相似文献   

11.
To perform immunohistochemical study of the distribution of gamma-glutamyl transpeptidase in human organs, a highly specific antibody against the human enzyme is required. We prepared monoclonal antibody against gamma-glutamyl transpeptidase from human kidney, using the hybridoma technique. The antibody was of the IgG1 type and the light chain belonged to the kappa class. The antibody reacted specifically with the 63 KD heavy subunit of the enzyme. Examination of the specificity of the antibody performed by immunohistochemical staining of human kidney sections revealed that the antigen was localized on the brush border and along the basolateral membrane of the epithelial cells of both the convoluted and the straight portions of the proximal tubule. This antibody was also reactive in several human organs other than kidney, including epididymis, prostate, seminal vesicle, pancreas, and normal liver, and in human hepatoma. These findings indicate the existence of an antigenic determinant common to human kidney and other organs. The monoclonal antibody did not crossreact with mouse, rat, guinea pig, rabbit, or pig kidney.  相似文献   

12.
Prostate tissue-specific gene expression is crucial for driving potentially therapeutic genes to target specifically to the prostate. Prostate secretory protein of 94 amino acids (PSP94), also known as beta-MSP (microseminoprotein), is one of the three most abundant secretory proteins of the prostate gland, and is generally considered to be prostate tissue-specific. We have previously demonstrated that the expression of the rat PSP94 gene is strictly prostate tissue-specific by an antibody against a recombinant rat PSP94. In order to study prostate targeting utilizing the PSP94 gene in a mouse pre-clinical experimental model, we need to establish antibodies against mouse PSP94 to confirm if it is prostate tissue-specific as well. In this study, firstly we raised a polyclonal antibody against a recombinant glutathione-S-transferase- (GST-) mouse mature form of PSP94. However, it showed very poor immunoreactivity against prostate tissue PSP94 as tested in Western blotting experiments. Neither antibodies against rat PSP94 nor mouse PSP94 showed significant cross-reactivity. Thus a second antibody was established against a recombinant mouse mature PSP94 containing N-terminal polyhistidines, and stronger immunoreactivity against mouse prostate tissue PSP94 was identified in Western blotting experiments. Both of these antibodies showed immunohistochemical reactivity, while the latter showed stronger reactivity in IHC when tested with different fixatives. By studying tissue distribution, we demonstrated that, as with rat PSP94, mouse PSP94 is strictly prostate tissue-specific in experiments of both Western blotting and immunohistochemistry (IHC). This conclusion was also derived from a comparison among antibodies against human, rat, and mouse PSP94, showing very different immunoreactivities in Western blotting and IHC. Finally, a competitive assay between different species was performed. We demonstrated that antibodies against PSP94 from different species (human, primate, rodents) have poor cross-reactivities. These observations also indicate that the PSP94 gene is a rapidly evolving gene in all species. Results from this study have led to the possibility of utilizing PSP94 as a targeting agent specifically to the prostate in a mouse experimental model.  相似文献   

13.
14.
Monoclonal antibody against 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with delipidated white matter from rat corpus callosum. The antibody was characterized by solid-phase radioimmunoassay, immunoblot of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoprecipitation from C6 glioma cells, and indirect immunofluorescence staining of monolayer cultures containing oligodendrocytes. The monoclonal antibody bound specifically to an intracellular antigen of oligodendrocytes, but not to Schwann cells, astrocytes, neurons, or fibroblast cytoplasm. The immunoblot of SDS-PAGE of CNS myelin showed that the antibody identified two protein bands at 48,000 and 50,000 molecular weight. These proteins were not identified in peripheral nervous system myelin. The monoclonal antibody immunoprecipitated CNP enzyme activity from extracts of C6 glioma cells. This monoclonal antibody should prove useful in further study of this myelin-specific enzyme in CNS myelin and in cells responsible for myelin production.  相似文献   

15.
An immunohistochemical and immunoelectron microscopic study was used to demonstrate tyrosine hydroxylase (TH) and dopamine -hydroxylase (DBH) immunoreactivities in the rat pancreas. Small TH immunoreactive cells were found in close contact with large TH immunonegative ganglion cells among the exocrine glands and were occasionally found in some islets. Some of these TH immunoreactive cells were also DBH immunopositive. The immunoreaction product was seen diffusely in the cytoplasm and in the granule cores of TH immunoreactive cells. All intra-pancreatic ganglion cells were immunoreactive for DBH, but not for TH. The TH immunoreactive cells were identified as small intensely fluorescent (SIF) cells due to their localization and morphological characteristics and showed no insulin, glucagon, somatostatin or pancreatic polypeptide immunoreactivities. These results indicate that SIF cells may release dopamine or noradrenaline to adequate stimuli while the intra-pancreatic ganglion cells with only DBH may not synthesize catecholamines in a normal biosynthetic pathway. TH immunoreactive nerve bundles without varicosities and fibers with varicosities, associated or unassociated with blood vessels, were found in both the exocrine and endocrine pancreas. Close apposition of TH immunoreactive nerve fibers to the smooth muscle and endothelial cells of the blood vessels was observed. A close apposition between TH immunoreactive nerve fibers and exocrine acinar cells and islet endocrine cells was sometimes found in the pancreas. The immunoreaction product was seen diffusely in the axoplasm and in the granular vesicles of the immunoreactive nerve fibers. Since no TH immunoreactive ganglion cells were present in the rat pancreas, the present study suggests that noradrenergic nerve fibers in the pancreas may be extrinsic in origin, and may exert an effect on the regulation of blood flow and on the secretory acitivity of the acinar cells, duct cells and endocrine cells.  相似文献   

16.
Cells that transiently express a catecholaminergic phenotype have previously been shown to appear in the rat gut during development. In the present study the immunocytochemical demonstration of the enzymes, tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH), were used as markers to examine tissues of rats and mice for catecholaminergic cells. The simultaneous radioautographic demonstration of labeling of identified catecholaminergic cells by tritiated thymidine was used to assess their ability to proliferate. Transient catecholaminergic cells were not limited to rat gut. They were also found in the gut of the mouse where they were present by 10 days' gestation and disappeared before Day 13. Similar cells were found in the mouse kidney, the mantle layer of the sacral spinal cord, and the dorsal mesentery. In mice, transient catecholaminergic cells contained TH but did not react with antiserum to DBH. Transient catecholaminergic cells in the rat gut and other locations synthesized DNA. We conclude that transient catecholaminergic cells (1) occur in both rat and mouse embryos, although the cells of mice may not contain DBH; (2) appear in other organs as well as the gut; (3) are able to proliferate. The ultimate fate of these cells remains to be demonstrated.  相似文献   

17.
Guanylate cyclase was purified 12,700-fold from bovine brain supernatant, and the purified enzyme exhibited essentially a single protein band on polyacrylamide gel electrophoresis. Repeated injection of the purified enzyme into rabbits produced an antibody to guanylate cyclase. The immunoglobulin G fraction from the immunized rabbit gave only one precipitin line against the purified guanylate cyclase and the crude supernatant of bovine brain on double immunodiffusion and immunoelectrophoreis. The antibody completely inhibited the soluble guanylate cyclase activity from bovine brain, various tissues of rat and mouse and neuroblastoma N1E 115 cells, whereas the Triton-dispersed particulate guanylate cyclase from these tissues was not inhibited by the antibody.  相似文献   

18.
The pi form of glutathione-S-transferase (GST), previously found to be oligodendrocyte associated, has also been found in myelin. In the brains of adult mice, immunocytochemical staining for a pi form of GST was observed in myelinated fibers, as well as oligodendrocytes. In contrast, and as previously found in rats, positive immunostaining for mu forms occurred in astrocytes and not in oligodendrocytes or myelinated fibers. Double immunofluorescence staining strengthened the conclusion that pi was in oligodendrocytes and myelin in mouse brains. The results of enzyme assays performed on brain homogenates and purified myelin indicated that GST specific activities in mouse brain myelin were almost as high (0.8-fold) as those in mouse brain homogenates. Low, but reproducible, GST activities were also observed in myelin purified from rat brains, in which pi had been demonstrated in oligodendrocytes and mu in astrocytes. The pi form was also stained by the immunoblot technique in myelin purified from mouse brain. It was concluded that pi is a myelin associated, as well as oligodendrocyte associated, enzyme in mouse brain, and possibly also in rat brain. This is the first report of localization of GSTs in mouse brain and of GST in myelin.  相似文献   

19.
A monoclonal antibody recently synthesized against dopamine (DA) was tested in rat and mouse brain sections after further treatment by PAP immunocytochemistry at the light and electron microscopic levels. Distribution of DA-immunoreactive cell bodies was examined in the substantia nigra (sn), the ventral tegmental area (vta), and the raphe nuclei. DA-immunoreactive fibers were investigated in two DA projection systems, the striatum and the septum. Many dopaminergic cell bodies were found in the sn and the vta. Some scattered DA neurons were encountered in the pars reticulata of the sn. The dorsal raphe and linearis raphe nuclei displayed sparse immunoreactive neurons and a dense plexus of DA fibers. Immunoreactive fibers were observed in the entire striatum, more dense in the ventral part. In the septum, immunonegative neurons were outlined by thin DA fibers in synaptic contact with their somata or dendrites. According to our observations, this DA monoclonal antibody seems to be a selective and sensitive tool for studying the dopaminergic neuronal circuitry at both histological and ultrastructural level.  相似文献   

20.
 Histochemical evidence is required to demonstrate the presence of biochemically defined cytosolic sialidase. To meet this requirement, we examined the immunohistochemical localization of the enzyme in rat skeletal muscles. Sections of chemically fixed tissues were incubated with a polyclonal antibody raised against a synthetic peptide which corresponded to a part of the enzyme protein. After incubation with the primary antibody, cryosections for fluorescence microscopy and resin sections for electron microscopy were incubated with a fluorochrome- and colloidal gold-labeled secondary antibody, respectively. Immunofluorescence was diffusely distributed in the muscle fibers and was also found in the perimysium and blood vessels. Many immunogold particles were scattered over the sarcoplasm, myofibrils, nucleoplasm, and matrix of mitochondria. The immunogold particles were also found in the equivalent compartments of axons, Schwann cells, and cells of endomysium and blood vessels. The specificity of the primary antibody was elucidated by immunoblotting and an immunoprecipitation test. These findings clearly indicate that this type of sialidase is essentially located in the cytosolic compartment. Consequently, the name, cytosolic sialidase, will be appropriate for this enzyme. Additionally it is indicated that this enzyme is also present in cells other than skeletal muscle fibers. Accepted: 29 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号