首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

2.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

3.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. The mechanisms by which Argentine ants effectively compete against native ant species have been previously addressed in field studies that centered on interference and exploitation competition at baits and mainly examined the colony-level performance of Argentine ants. Detailed behavioral observations explaining the basis for the strong competitive ability of L. humile are comparatively rare. To gain a better understanding of the mechanisms by which Argentine ants displace native ants we examined the aggressive interactions between the Argentine ants and the odorous house ant, Tapinoma sessile in four different aggression assays: (1) worker dyad interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a resource competition assay which focused on competition for food and nesting space. Our results demonstrate a clear disparity between worker-level and colony-level fighting ability of Argentine ants and provide behavioral evidence to explain the superior interference ability of Argentine ants in group assays. Argentine ants experienced mixed success in fighting against odorous house ants in dyad interactions, but gradually gained a numerical advantage in symmetrical group interactions by active cooperation among nestmates. Results of the resource competition assay indicate that Argentine ants recruit rapidly, numerically dominate food and nesting sites, and aggressively displace T. sessile from baits. Taken together, the results of these assays allow us to pinpoint the behavioral mechanisms responsible for the remarkable competitive ability of Argentine ants.  相似文献   

4.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

5.
Heller NE  Sanders NJ  Shors JW  Gordon DM 《Oecologia》2008,155(2):385-395
Climate change may exacerbate invasions by making conditions more favorable to introduced species relative to native species. Here we used data obtained during a long-term biannual survey of the distribution of ant species in a 481-ha preserve in northern California to assess the influence of interannual variation in rainfall on the spread of invasive Argentine ants, Linepithema humile, and the displacement of native ant species. Since the survey began in 1993, Argentine ants have expanded their range into 74 new hectares. Many invaded hectares were later abandoned, so the range of Argentine ants increased in some years and decreased in others. Rainfall predicted both range expansion and interannual changes in the distribution of Argentine ants: high rainfall, particularly in summer months, promoted their spread in the summer. This suggests that an increase in rainfall will promote a wider distribution of Argentine ants and increase their spread into new areas in California. Surprisingly, the distribution of two native ant species also increased following high rainfall, but only in areas of the preserve that were invaded by L. humile. Rainfall did not have a negative impact on total native ant species richness in invaded areas. Instead, native ant species richness in invaded areas increased significantly over the 13 years of observation. This suggests that the impact of Argentine ants on naïve ant communities may be most severe early in the invasion process.  相似文献   

6.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

7.
Argentine ants (Linepithema humile) in their native South American range, like most other ant species, form spatially restricted colonies that display high levels of aggression toward other such colonies. In their introduced range, Argentine ants are unicolonial and form massive supercolonies composed of numerous nests among which territorial boundaries are absent. Here we examine the role of cuticular hydrocarbons (CHCs) in nestmate recognition of this highly damaging invasive ant using three supercolonies from its introduced range. We conducted behavioral assays to test the response of Argentine ants to workers treated with colonymate or non-colonymate CHCs. Additionally, we quantified the amount of hydrocarbons transferred to individual ants and performed gas chromatography-mass spectrometry (GC/MS) to qualitatively characterize our manipulation of CHC profiles. The GC/MS data revealed marked differences in the hydrocarbon profiles across supercolonies and indicated that our treatment effectively masked the original chemical profile of the treated ants with the profile belonging to the foreign individuals. We found that individual workers treated with foreign CHCs were aggressively rejected by their colonymates and this behavior appears to be concentration-dependent: larger quantities of foreign CHCs triggered higher levels of aggression. Moreover, this response was not simply due to an increase in the amount of CHCs applied to the cuticle since treatment with high concentrations of nestmate CHCs did not trigger aggression.The results of this study bolster the findings of previous studies on social insects that have implicated CHCs as nestmate recognition cues and provide insight into the mechanisms of nestmate recognition in the invasive Argentine ant. Received 6 February 2007; revised 31 May and 27 July 2007; accepted 16 August 2007.  相似文献   

8.
Many invasive ants, including the Argentine ant Linepithema humile, form expansive supercolonies, within which intraspecific aggression is absent. The behavioral relationships among introduced Argentine ant populations at within-country or within-continent scales have been studied previously, but the behavioral relationships among intercontinental populations have not been examined. The present study investigated the levels of aggression among intercontinental Argentine ant populations by transporting live ants from Europe and California to Japan and conducting aggression tests against Japanese populations. Workers from the dominant supercolonies of Europe and California did not show aggressive behavior toward workers from the dominant supercolony of Japan, whereas they fought vigorously against workers from minor supercolonies. The three massive supercolonies, together with Argentine ants from Macaronesia, may be the largest non-aggressive unit formed by a social insect species in which intraspecific aggression exists. Absence or low levels of aggression at transcontinental scale, which may have derived from low genetic variation, may help introduced Argentine ants maintain expansive supercolonies. The lack of aggression implies possible frequent exchanges of individuals among the intercontinental populations mediated by human activities.  相似文献   

9.
Unicolonial ant colonies occupy many nests and individuals rarely show aggression across large geographic distances. These traits make it difficult to detect colony structure. Here we identify colony structure at scales of hundreds of square-meters, within an invasive population of unicolonial Argentine ants. In experiments using labeled food, and in a 3-year census of nests and trails, we found that food was shared and nests were linked by trails at distances up to 50 meters. Food was not distributed to all nearby Argentine ant nests, showing that ants tend to share resources within a spatially bounded group of nests. The spatial extent of food sharing increased from winter to summer. Across different habitats and nest densities, nests were consistently aggregated at spatial scales of 3- 4 meters in radius. This suggests that new nests bud from old nests at short distances regardless of local conditions. We suggest that a ‘colony’ of Argentine ants could be defined as a group of nests among which ants travel and share food. In our study population, colonies occupy up to 650 m2 and contain as many as 5 million ants. In combination with previous work showing that there is genetic differentiation among nests at similar spatial scales, the results suggest that Argentine ant populations do not function ecologically as single, large supercolonies, but instead as mosaics of smaller, distinct colonies consisting of groups of interacting nests. Received 6 June 2008; revised 30 June 2008; accepted 2 July 2008.  相似文献   

10.
A combined field experiment and modelling approach has been used to provide evidence that ants may be responsible for an observed lower patchiness and higher plant diversity in the neighbourhood of ant nests, within Mediterranean dry grasslands belonging to the phytosociological class Tuberarietea guttatae. The hypothesis was that seeds occurring in clumps may have a higher probability to be harvested than seeds having a scattered distribution. In order to test this hypothesis, four analysis steps were performed. First, pattern of seed production and dispersal of four species was recorded; two of them were more abundant next to ant nests (Tuberaria guttata, Euphorbia exigua), whereas the other two were more abundant away from ant nests (Bromus scoparius and Plantago bellardi). Second, a stochastic model was developed to simulate the observed dispersal patterns of each studied species. Third, 10 seed spatial arrangements in accordance to the distribution patterns created by the model were offered to ants and the location of predated seeds was recorded. Finally, the observed pattern of seed predation was matched to models performed by different distributions of probability. Results showed that the probability of being predated decreased as distance among seeds increased. This preference of ants for high concentration of food items holds down the dominant species sufficiently to allow the subordinates to survive, thus increasing diversity near nests. The observed higher frequency of small-seeded, small-sized, or creeping therophytes close to the ant nests can be therefore seen as an example of indirect myrmecophily.  相似文献   

11.
When populations of native predators are subsidized by numerically dominant introduced species, the structure of food webs can be greatly altered. Surprisingly little is known, however, about the general factors that influence whether or not native predators consume introduced species. To learn more about this issue, we examined how native pit-building ant lions (Myrmeleon) are affected by Argentine ant (Linepithema humile) invasions in coastal southern California. Compared to areas without L. humile, invaded areas contained few native ant species and were deficient in medium-sized and large bodied native ants. Based on these differences, we predicted that Argentine ants would negatively affect ant lion larvae. Contrary to this expectation, observational surveys and laboratory growth rate experiments revealed that Myrmeleon were heavier, had longer mandibles, and grew more quickly when their main ant prey were Argentine ants rather than native ants. Moreover, a field transplant experiment indicated that growth rates and pupal weights were not statistically different for larval ant lions reared in invaded areas compared to those reared in uninvaded areas. Argentine ants were also highly susceptible to capture by larval Myrmeleon. The species-level traits that presumably make Argentine ant workers susceptible to capture by larval ant lions—small size and high activity levels—appear to be the same characteristics that make them unsuitable prey for vertebrate predators, such as horned lizards. These results underscore the difficulties in predicting whether or not numerically dominant introduced species serve as prey for native predators.  相似文献   

12.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

13.
As invasive species are key threats to ecosystem structure and function, it is essential to understand the factors underlying their success. Enigmatically, mutualistic organisms are often successful in colonizing novel environments even though they commonly persist only through intricate relationships with other species. Mutualistic ants, for example, protect aphids from natural enemies while collecting carbohydrate–rich honeydew. To facilitate this interaction, ants have evolved aggressive responses to aphid alarm pheromone emissions. As invasive and native mutualists have not evolved together, however, it is unclear if this form of cross-species communication exists between these two parties thereby facilitating these novel interactions. We address this hypothesis by assessing whether the invasive Argentine ant, Linepithema humile, responds to native poplar aphid, Chaitophorus populicola, alarm signals. Here, we show that interspecific signalling does exist in this newly established mutualistic interaction. Argentine ant workers exhibit increased aggression and double the number of visits to an aphid colony after an aphid alarm signal is emitted. We suggest that pre-adaptations may facilitate the emergence of mutualistic associations between many invasive and native species.  相似文献   

14.
A method to estimate the number of workers in Myrmica ant nests on abandoned meadows was developed based on removal of workers. Ant workers have a tendency to climb up on wooden sticks put into their nests, therefore, assuming that the number of workers removed on sticks is related to the total number of workers within the nests, regression models for Myrmica rubra, M. ruginodis and M. scabrinodis may be built. We used a general regression model to perform a backward stepwise elimination of explanatory variables. These were the number of workers removed on sticks, temperature at the nest and site (a categorical variable). In case of each species the final model contained only the number of workers removed as a significant variable. The method is apparently non-destructive as we did not observe decreased survival of nests surveyed as compared to control nests. The method can be a very useful tool in population studies of ants as well as in biodiversity projects, where ants are used as bioinidcators. Received 10 February 2005; revised 4 August 2005; accepted 24 August 2005.  相似文献   

15.
The direct and indirect interactions of invasive ants with plants, insect herbivores, and Hemiptera are complex. While ant and Hemiptera interactions with native plants have been well studied, the effects of invasive ant–scale insect mutualisms on the reproductive output of invasive weeds have not. The study system consisted of Argentine ants (Linepithema humile), boneseed (Chrysanthemoides monilifera monilifera), and sap-sucking scale insects (Hemiptera: Saissetia oleae and Parasaissetia nigra), all of which are invasive in New Zealand. We examined the direct and indirect effects of Argentine ants on scale insects and other invertebrates (especially herbivores) and on plant reproductive output. Argentine ants spent one-third of their time specifically associated with scale insects in tending behaviours. The invertebrate community was significantly different between uninfested and infested plants, with fewer predators and herbivores on ant-infested plants. Herbivore damage was significantly reduced on plants with Argentine ants, but sooty mould colonisation was greater where ants were present. Herbivore damage increased when ants were excluded from plants. Boneseed plants infested with Argentine ants produced significantly more fruits than plants without ants. The increase in reproductive output in the presence of ants may be due to increased pollination as the result of pollinators being forced to relocate frequently to avoid attack by ants, resulting in an increase in pollen transfer and higher fruit/seed set. The consequences of Argentine ant invasion can be varied; not only does their invasion have consequences for maintaining biodiversity, ant invasion may also affect weed and pest management strategies.  相似文献   

16.
Small-scale disturbances caused by animals often modify soil resource availability and may also affect plant attributes. Changes in the phenotype of plants growing on disturbed, nutrient-enriched microsites may influence the distribution and abundance of associated insects. We evaluated how the high nutrient availability generated by leaf-cutting ant nests in a Patagonian desert steppe may spread along the trophic chain, affecting the phenotype of two thistle species, the abundance of a specialist aphid and the composition of the associated assemblage of tending ants. Plants of the thistle species Carduus nutans and Onopordum acanthium growing in piles of waste material generated by leaf-cutting ant nests (i.e., refuse dumps) had more leaves, inflorescences and higher foliar nitrogen content than those in non-nest soils. Overall, plants in refuse dumps showed higher abundance of aphids than plants in non-nest soils, and aphid colonies were of greater size on O. acanthium plants than on C. nutans plants. However, only C. nutans plants showed an increase in aphid abundance when growing on refuse dumps. This resulted in a similar aphid load in both thistle species when growing on refuse dumps. Accordingly, only C. nutans showed an increase in the number of ant species attending aphids when growing on refuse dumps. The increase of soil fertility generated by leaf-cutting ant nests can affect aphid abundance and their tending ant assemblage through its effect on plant size and quality. However, the propagation of small-scale soil disturbances through the trophic chain may depend on the identity of the species involved.  相似文献   

17.
Argentine ants (Linepithema humile) usually actively displace native ants through a combination of rapid recruitment, high numerical dominance and intense aggressive fights. However, in some cases, native ants can offer a strong resistance. In Corsica, a French Mediterranean island, local resistance by the dominant Tapinoma nigerrimum has been proposed as a factor limiting Argentine ant invasion. With the aim of evaluating the abilities of T. nigerrimum in interference and exploitative competition, this study tested in the laboratory the aggressive interactions between this native dominant ant and the invasive Argentine ant. We used four different assays between L. humile and T. nigerrimum: (1) worker dyadic interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a competition for space and food. This study confirms the ability of Argentine ants to compete with native species, by initiating more fights, using cooperation and simultaneously deploying physical and chemical defenses. However, despite Argentine ant fighting capabilities, T. nigerrimum was more efficient in both interference and exploitative competition. Its superiority was obvious in the space and food competition assays, where T. nigerrimum dominated food in 100% of the replicates after 1 h and invaded Argentine ant nests while the reverse was never observed. The death feigning behavior exhibited by Argentine ant workers also suggests the native ant’s superiority. Our study thus demonstrates that T. nigerrimum can offer strong competition and so may be able to limit the spread of Argentine ants in Corsica. This confirms that interspecific competition from ecologically dominant native species can affect the invasion success of invaders, notably by decreasing the likelihood of incipient colony establishment and survival.  相似文献   

18.
Predator–prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.  相似文献   

19.
Holway DA  Suarez AV 《Oecologia》2004,138(2):216-222
The success of some invasive species may depend on phenotypic changes that occur following introduction. In Argentine ants ( Linepithema humile) introduced populations typically lack intraspecific aggression, but native populations display such behavior commonly. We employ three approaches to examine how this behavioral shift might influence interspecific competitive ability. In a laboratory experiment, we reared colonies of Forelius mccooki with pairs of Argentine ant colonies that either did or did not exhibit intraspecific aggression. F. mccooki reared with intraspecifically non-aggressive pairs of Argentine ants produced fewer eggs, foraged less actively, and supported fewer living workers than those reared with intraspecifically aggressive pairs. At natural contact zones between competing colonies of L. humile and F. mccooki, the introduction of experimental Argentine ant colonies that fought with conspecific field colonies caused L. humile to abandon baits in the presence of F. mccooki, whereas the introduction of colonies that did not fight with field colonies of Argentine ants resulted in L. humile retaining possession of baits. Additional evidence for the potential importance of colony- structure variation comes from the Argentine ants native range. At a site along the Rio de la Plata in Argentina, we found an inverse relationship between ant richness and density of L. humile (apparently a function of local differences in colony structure) in two different years of sampling.  相似文献   

20.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号