首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Recombinant adeno-associated virus type 5 (rAAV-5) is known to efficiently transduce airway epithelia via apical infection. In contrast, rAAV-2 has been shown to be inherently ineffective at transducing airway epithelia from the apical surface. However, tripeptide proteasome inhibitors (such as LLnL) can dramatically enhance rAAV-2 transduction from the apical surface of human polarized airway epithelia by modulating the intracellular trafficking and processing of the virus. To further investigate potential differences between rAAV-2 and rAAV-5 that might explain their altered ability to transduce airway epithelia from the apical membrane, we examined the functional involvement of the ubiquitin/proteasome pathway and rate-limiting aspects of second-strand synthesis for these two rAAV serotypes. To this end, we conducted studies to compare the extent to which LLnL alters transduction efficiencies with both rAAV-2 and rAAV-2/5 by using luciferase and enhanced green fluorescent protein (EGFP) reporter vectors. Our results demonstrate that the coadministration of LLnL at the time of viral infection significantly enhanced transduction of both rAAV-2/5 and rAAV-2 from the apical surface of airway epithelia. Although rAAV-2/5 was slightly more effective at transducing epithelia from the apical membrane, rAAV-2 transduction was superior to that of rAAV-2/5 in the presence of proteasome inhibitors. Interestingly, the basolateral membrane entry pathways for both serotypes were not significantly affected by the addition of LLnL, which suggests that apical and basolateral infectious pathways possess distinctive intracellular processing pathways for both rAAV-2 and rAAV-5. Studies comparing the transduction of short self-complementary (scAAV) to full-length conventional AAV EGFP vectors suggested that second-strand synthesis of rAAV genomes was not rate limiting for either serotype or altered by proteasome inhibitors following apical infection of polarized airway epithelia. These findings suggest that both rAAV-2 and rAAV-5 share similar intracellular viral processing barriers that involve the ubiquitin/proteasome system, but do not appear to involve second-strand synthesis.  相似文献   

2.
Tripeptidyl aldehyde proteasome inhibitors have been shown to effectively increase viral capsid ubiquitination and transduction of recombinant adeno-associated virus type 2 (rAAV-2) and rAAV-5 serotypes. In the present study we have characterized a second class of proteasome-modulating agents (anthracycline derivatives) for their ability to induce rAAV transduction. The anthracycline derivatives doxorubicin and aclarubicin were chosen for analysis because they have been shown to interact with the proteasome through a mechanism distinct from that of tripeptidyl aldehydes. Our studies demonstrated that doxorubicin and aclarubicin also significantly augmented rAAV transduction in airway cell lines, polarized human airway epithelia, and mouse lungs. Both tripeptidyl aldehyde and anthracycline proteasome-modulating agents similarly augmented nuclear accumulation of rAAV in A549 and IB3 airway cell lines. However, these two cell types demonstrated cell specificity in the ability of N-acetyl-L-leucyl-L-leucyl-L-norleucine (LLnL) or doxorubicin to augment rAAV transduction. Interestingly, the combined administration of LLnL and doxorubicin resulted in substantially increased transduction (>2,000-fold) following apical infection of human polarized epithelia with either rAAV-2 or rAAV-5. In summary, the cell type specificity of LLnL and doxorubicin to induce rAAV transduction, together with the ability of these compounds to synergistically enhance rAAV transduction in polarized airway epithelial induction, suggests that these two classes of compounds likely modulate different proteasome functions that affect rAAV transduction. Findings from this study provide new insights into how modulation of proteasome function can be effectively used to augment rAAV transduction in airway epithelia for gene therapy of cystic fibrosis.  相似文献   

3.
Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improving the safety and therapeutic benefit in clinical trials. In the present study, we compared the efficiency of gene delivery to mouse muscle cells for recombinant AAV type 2 (rAAV-2) and rAAV-2cap5 (AAV-2 genomes pseudo-packaged into AAV-5 capsids). Despite similar levels of transduction by these two vectors in undifferentiated myoblasts, pseudotyped rAAV-2cap5 demonstrated dramatically enhanced transduction in differentiated myocytes in vitro (>500-fold) and in skeletal muscle in vivo (>200-fold) compared to rAAV-2. Serotype-specific differences in transduction efficiency did not directly correlate with viral binding to muscle cells but rather appeared to involve endocytic or intracellular barriers to infection. Furthermore, application of this pseudotyped virus in a mouse model of Duchenne's muscular dystrophy also demonstrated significantly improved transduction efficiency. These findings should have a significant impact on improving rAAV-mediated gene therapy in muscle.  相似文献   

4.
The development of targeted vectors, capable of tissue-specific transduction, remains one of the important aspects of vector modification for gene therapy applications. Recombinant adeno-associated virus type 2 (rAAV-2)-based vectors are nonpathogenic, have relatively low immunogenicity, and are capable of long-term transgene expression. AAV-2 vectors bind primarily to heparan sulfate proteoglycan (HSPG), a receptor that is present in many tissues and cell types. Because of the widespread expression of HSPG on many tissues, targeted transduction in vivo appears to be limited with AAV-2 vectors. Thus, development of strategies to achieve transductional targeting will have a profound benefit in the future application of these vectors. We report here a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV-2-based vectors. The present report utilized a high-affinity biotin-avidin interaction as a molecular bridge to cross-link purified targeting ligands, produced genetically as fusion proteins to core-streptavidin, in a prokaryotic expression system. Conjugation of the bispecific targeting protein to the vector was achieved by biotinylating purified rAAV-2 without abolishing the capsid structure, internalization, and subsequent transgene expression. The tropism-modified vectors, targeted via epidermal growth factor receptor (EGFR) or fibroblast growth factor 1alpha receptor (FGFR1alpha), resulted in a significant increase in transduction efficiency of EGFR-positive SKOV3.ip1 cells and FGFR1alpha-positive M07e cells, respectively. Further optimization of this method of targeting should enhance the potential of AAV-2 vectors in ex vivo and in vivo gene therapy and may form the basis for developing targeting methods for other AAV serotype capsids.  相似文献   

5.
Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.  相似文献   

6.
Duan D  Li Q  Kao AW  Yue Y  Pessin JE  Engelhardt JF 《Journal of virology》1999,73(12):10371-10376
Recombinant adeno-associated virus (rAAV) vectors for gene therapy of inherited disorders have demonstrated considerable potential for molecular medicine. Recent identification of the viral receptor and coreceptors for AAV type 2 (AAV-2) has begun to explain why certain organs may demonstrate higher efficiencies of gene transfer with this vector. However, the mechanisms by which AAV-2 enters cells remain unknown. In the present report, we have examined whether the endocytic pathways of rAAV-2 are dependent on dynamin, a GTPase protein involved in clathrin-mediated internalization of receptors and their ligands from the plasma membrane. Using a recombinant adenovirus expressing a dominant-inhibitory form of dynamin I (K44A), we have demonstrated that rAAV-2 infection is partially dependent on dynamin function. Overexpression of mutant dynamin I significantly inhibited AAV-2 internalization and gene delivery, but not viral binding. Furthermore, colocalization of rAAV and transferrin in the same endosomal compartment provides additional evidence that clathrin-coated pits are the predominant pathway for endocytosis of AAV-2 in HeLa cells.  相似文献   

7.
Some retroviruses contain monoubiquitinated Gag and do not bud efficiently from cells treated with proteasome inhibitors, suggesting an interaction between the ubiquitin-proteasome system and retrovirus assembly. We examined equine infectious anemia virus (EIAV) particles and found that approximately 2% of the p9(Gag) proteins are monoubiquitinated, demonstrating that this Gag protein interacts with an ubiquitinating activity. Different types of proteasome inhibitors were used to determine if proteasome inactivation affects EIAV release from chronically infected cells. Pulse-chase immunoprecipitation and time course immunoblot analyses showed that proteasome inactivation slightly decreased virus release (at most a twofold effect), while it did not affect Gag processing. These results contrast with those obtained with other viruses which are sensitive to these inhibitors. This suggests that, although its Gag is monoubiquitinated, the requirements for EIAV release are somewhat different from those for retroviruses that are sensitive to proteasome inhibitors.  相似文献   

8.
Mutations were made at 64 positions on the external surface of the adeno-associated virus type 2 (AAV-2) capsid in regions expected to bind antibodies. The 127 mutations included 57 single alanine substitutions, 41 single nonalanine substitutions, 27 multiple mutations, and 2 insertions. Mutants were assayed for capsid synthesis, heparin binding, in vitro transduction, and binding and neutralization by murine monoclonal and human polyclonal antibodies. All mutants made capsid proteins within a level about 20-fold of that made by the wild type. All but seven mutants bound heparin as well as the wild type. Forty-two mutants transduced human cells at least as well as the wild type, and 10 mutants increased transducing activity up to ninefold more than the wild type. Eighteen adjacent alanine substitutions diminished transduction from 10- to 100,000-fold but had no effect on heparin binding and define an area (dead zone) required for transduction that is distinct from the previously characterized heparin receptor binding site. Mutations that reduced binding and neutralization by a murine monoclonal antibody (A20) were localized, while mutations that reduced neutralization by individual human sera or by pooled human, intravenous immunoglobulin G (IVIG) were dispersed over a larger area. Mutations that reduced binding by A20 also reduced neutralization. However, a mutation that reduced the binding of IVIG by 90% did not reduce neutralization, and mutations that reduced neutralization by IVIG did not reduce its binding. Combinations of mutations did not significantly increase transduction or resistance to neutralization by IVIG. These mutations define areas on the surface of the AAV-2 capsid that are important determinants of transduction and antibody neutralization.  相似文献   

9.
Adeno-associated viruses (AAVs) are promising vectors for various gene therapy applications due to their long-lasting transgene expression and wide spectrum of target cells. Recently, however, it has become apparent that there are considerable differences in the efficiencies of transduction of different cell types by AAVs. Here, we analyzed the efficiencies of transduction and the transport mechanisms of AAV type 2 (AAV-2) in different cell types, emphasizing endothelial cells. Expression analyses in both cultured cells and the rabbit carotid artery assay showed a remarkably low level of endothelial cell transduction in comparison to the highly permissive cell types. The study of the endosomal pathways of AAV-2 with fluorescently labeled virus showed clear targeting of the Golgi area in permissive cell lines, but this phenomenon was absent in the endothelial cell line EAhy-926. On the other hand, the response to the block of endosomal acidification by bafilomycin A1 also showed differences among the permissive cell types. We also analyzed the effect of proteasome inhibitors on endothelial cells, but their impact on the primary cells and in vivo was not significant. On the contrary, analysis of the expression pattern of heparan sulfate proteoglycans (HSPGs), the primary receptors of AAV-2, revealed massive deposits of HSPG in the extracellular matrix of endothelial cells. The matrix-associated receptors may therefore compete for virus binding and reduce transduction in endothelial cells. Accordingly, in endothelial cells detached from their matrix, AAV-2 transduction was significantly increased. Altogether, these results point to a more complex cell-type-specific mode of transduction of AAV-2 than previously appreciated.  相似文献   

10.
Using immunofluorescence and in situ hybridization techniques, we studied the intracellular localization of adeno-associated virus type 2 (AAV-2) Rep proteins, VP proteins, and DNA during the course of an AAV-2/adenovirus type 2 coinfection. In an early stage, the Rep proteins showed a punctate distribution pattern over the nuclei of infected cells, reminiscent of replication foci. At this stage, no capsid proteins were detectable. At later stages, the Rep proteins were distributed more homogeneously over the nuclear interior and finally became redistributed into clusters slightly enriched at the nuclear periphery. During an intermediate stage, they also appeared at an interior part of the nucleolus for a short period, whereas most of the time the nucleoli were Rep negative. AAV-2 DNA colocalized with the Rep proteins. All three capsid proteins were strongly enriched in the nucleolus in a transient stage of infection, when the Rep proteins homogeneously filled the nucleoplasm. Thereafter, they became distributed over the whole nucleus and colocalized in nucleoplasmic clusters with the Rep proteins and AAV-2 DNA. While VP1 and VP2 strongly accumulated in the nucleus, VP3 was almost equally distributed between the nucleus and cytoplasm. Capsids, visualized by a conformation-specific antibody, were first detectable in the nucleoli and then spread over the whole nucleoplasm. This suggests that nucleolar components are involved in initiation of capsid assembly whereas DNA packaging occurs in the nucleoplasm. Expression of a transfected full-length AAV-2 genome followed by adenovirus infection showed all stages of an AAV-2/adenovirus coinfection, whereas after expression of the cap gene alone, capsids were restricted to the nucleoli and did not follow the nuclear redistribution observed in the presence of the whole AAV-2 genome. Coexpression of Rep proteins released the restriction of capsids to the nucleolus, suggesting that the Rep proteins are involved in nuclear redistribution of AAV capsids during viral infection. Capsid formation was dependent on the concentration of expressed capsid protein.  相似文献   

11.
Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.  相似文献   

12.
Adeno-associated virus type 2 (AAV-2) gene expression is tightly controlled by functions of the helper virus as well as by the products of its own viral rep gene. Double-immunofluorescence studies of Rep and VP protein expression in cells coinfected with AAV-2 and adenovirus type 2 showed that a large proportion of these cells expressed Rep78 and Rep52 but no capsid proteins. The percentage of Rep78/Rep52- and capsid protein-positive cells was strongly influenced by the relative ratio of AAV-2 to adenovirus type 2. In contrast, nearly all cells positive for Rep68/Rep40 were also positive for capsid protein expression. Examination of p40 promoter transactivation by individual Rep proteins in the presence of adenovirus, however, showed that both Rep78 and Rep68 efficiently stimulated p40 mRNA accumulation and capsid protein expression. This strong transactivation was reliant upon the presence of terminal repeats and correlated with template amplification. In replication-deficient expression constructs, transactivation was observed only with Rep68 and was dependent on the linear Rep binding site within the left terminal repeat which was detected in the presence of high adenovirus concentrations. In the absence of any terminal repeat sequences, Rep68 expression again led to a minor transactivation of capsid protein expression which was detectable only at low adenovirus concentrations. This low level of transactivation of capsid protein expression by Rep proteins in the absence of terminal repeats resulted in a lower efficiency of capsid assembly. The data show a dominant influence of adenovirus type 2 functions on AAV-2 gene expression, a requirement for terminal repeats for strong transactivation of the p40 promoter by Rep proteins, and differential influences of Rep78 and Rep68 on AAV-2 promoters. Implications for the production of recombinant AAV-2 vectors are discussed.  相似文献   

13.
The previously characterized monoclonal antibodies (MAbs) A1, A69, B1, and A20 are directed against assembled or nonassembled adeno-associated virus type 2 (AAV-2) capsid proteins (A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, J. Virol. 71:1341-1352, 1997). Here we describe the linear epitopes of A1, A69, and B1 which reside in VP1, VP2, and VP3, respectively, using gene fragment phage display library, peptide scan, and peptide competition experiments. In addition, MAbs A20, C24-B, C37-B, and D3 directed against conformational epitopes on AAV-2 capsids were characterized. Epitope sequences on the capsid surface were identified by enzyme-linked immunoabsorbent assay using AAV-2 mutants and AAV serotypes, peptide scan, and peptide competition experiments. A20 neutralizes infection following receptor attachment by binding an epitope formed during AAV-2 capsid assembly. The newly isolated antibodies C24-B and C37-B inhibit AAV-2 binding to cells, probably by recognizing a loop region involved in binding of AAV-2 to the cellular receptor. In contrast, binding of D3 to a loop near the predicted threefold spike does not neutralize AAV-2 infection. The identified antigenic regions on the AAV-2 capsid surface are discussed with respect to their possible roles in different steps of the viral life cycle.  相似文献   

14.
Lysosomotropic drugs such as NH4Cl have been useful for studying the role of low pH in early events in virus infection. NH4Cl blocks the production of infectious progeny virus in mammalian reovirus-infected cells. The inhibitory effect of NH4Cl is mediated by an inhibition of intracellular digestion of reovirus outer capsid proteins. In vitro digestion of viral outer capsid proteins produces infectious partially uncoated particles, called intermediate subviral particles, which are no longer inhibited by the presence of NH4Cl. These results indicate that proteolytic processing of reovirus outer capsid proteins takes place in a low pH compartment of the cell and is an essential step in the viral infectious cycle.  相似文献   

15.
The ubiquitin-proteasome system has been shown to play an important role in the replication cycle of different viruses. In this study, we describe a strong impairment of rotavirus replication upon inhibition of proteasomal activity. The effect was evidenced at the level of accumulation of viral proteins, viral RNA, and yield of infective particles. Kinetic studies revealed that the early steps of the replicative cycle following attachment, entry, and uncoating were clearly more sensitive to proteasome inhibition. We ruled out a direct inhibition of the viral polymerase activities and stability of viral proteins and found that the crucial step that was impaired by blocking proteasome activity was the assembly of new viroplasms. This was demonstrated by using chemical inhibitors of proteasome and by gene silencing using small interfering RNAs (siRNAs) specific for different proteasomal subunits and for the ubiquitin precursor RPS27A. In addition, we show that the effect of proteasome inhibition on virus infection is not due to increased levels of beta interferon (IFN-β).  相似文献   

16.
Insulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected. We have now studied the signaling events that are involved in activation of the IRS-1 proteasome degradation pathway. Additionally, we have addressed structural elements in IRS-1 versus IRS-2 that are required for its specific proteasome degradation. Using ts20 cells, which express a temperature-sensitive mutant of ubiquitin-activating enzyme E1, ubiquitination of IRS-1 was shown to be a prerequisite for insulin-induced IRS-1 proteasome degradation. Using IRS-1/IRS-2 chimeric proteins, the N-terminal region of IRS-1 including the PH and PTB domains was identified as essential for targeting IRS-1 to the ubiquitin-proteasome degradation pathway. Activation of phosphatidylinositol 3-kinase is necessary but not sufficient for activating and sustaining the IRS-1 ubiquitin-proteasome degradation pathway. In contrast, activation of mTOR is not required for IRS-1 degradation in CHO/IR cells. Thus, our data provide insight into the molecular mechanism of insulin-induced activation of the IRS-1 ubiquitin-proteasome degradation pathway.  相似文献   

17.
Antiviral inhibition of the HIV-1 capsid protein   总被引:9,自引:0,他引:9  
  相似文献   

18.
We compared the transduction efficiencies and tropisms of titer-matched recombinant adeno-associated viruses (rAAV) derived from serotypes 2 and 5 (rAAV-2 and rAAV-5, respectively) within the rat nigrostriatal system. The two serotypes (expressing enhanced green fluorescent protein [EGFP]) were delivered by stereotaxic surgery into the same animals but different hemispheres of the striatum (STR), the substantia nigra (SN), or the medial forebrain bundle (MFB). While both serotypes transduced neurons effectively within the STR, rAAV-5 resulted in a much larger EGFP-expressing area than did rAAV-2. However, neurons transduced with rAAV-2 vectors expressed higher levels of EGFP. Consistent with this result, EGFP-positive projections emanating from transduced striatal neurons covered a larger area of the SN pars reticulata (SNr) after striatal delivery of rAAV-5, but EGFP levels in fibers of the SNr were higher after striatal injection of rAAV-2. We also compared the potentials of the two vectors for retrograde transduction and found that striatal delivery of rAAV-5 resulted in significantly more transduced dopaminergic cell bodies within the SN pars compacta and ventral tegmental area. Similarly, EGFP-transduced striatal neurons were detected only after nigral delivery of rAAV-5. Furthermore, we demonstrate that after striatal AAV-5 vector delivery, the transduction profiles were stable for as long as 9 months. Finally, although we did not target the hippocampus directly, efficient and widespread transduction of hippocampal neurons was observed after delivery of rAAV-5, but not rAAV-2, into the MFB.  相似文献   

19.
Many proteins are regulated by a variety of post-translational modifications, and orchestration of these modifications is frequently required for full control of activity. Currently little is known about the combinatorial activity of different post-translational modifications. Here we show that extensive cross-talk exists between sumoylation and ubiquitination. We found that a subset of SUMO-2-conjugated proteins is subsequently ubiquitinated and degraded by the proteasome. In a screen for preferential SUMO-1 or SUMO-2 target proteins, we found that ubiquitin accumulated in purified SUMO-2 conjugates but not in SUMO-1 conjugates. Upon inhibition of the proteasome, the amount of ubiquitin in purified SUMO-2 conjugates increased. In addition, we found that endogenous SUMO-2/3 conjugates, but not endogenous SUMO-1 conjugates, accumulated in response to proteasome inhibitors. Quantitative proteomics experiments enabled the identification of 73 SUMO-2-conjugated proteins that accumulated in cells treated with proteasome inhibitors. Cross-talk between SUMO-2/3 and the ubiquitin-proteasome system controls many target proteins that regulate all aspects of nucleic acid metabolism. Surprisingly the relative abundance of 40 SUMO-2-conjugated proteins was reduced by proteasome inhibitors possibly because of a lack of recycled SUMO-2. We conclude that SUMO-2/3 conjugation and the ubiquitin-proteasome system are tightly integrated and act in a cooperative manner.  相似文献   

20.
Apple necrotic mosaic virus (ApNMV) is highly associated with the occurrence of apple mosaic disease in China. However, ApNMV–host interactions and defence mechanisms of host plants against this virus are poorly studied. Here, we report that nitrate treatment restrains ApNMV genomic RNA accumulation by destabilizing viral replication protein 1a through the MdBT2-mediated ubiquitin-proteasome pathway. MdBT2, a nitrate-responsive BTB/TAZ domain-containing protein, was identified in a yeast two-hybrid screen of an apple cDNA library using viral protein 1a as bait, and 1a was further confirmed to interact with MdBT2 both in vivo and in vitro. It was further verified that MdBT2 promoted the ubiquitination and degradation of viral protein 1a through the ubiquitin-proteasome pathway in an MdCUL3A-independent manner. Viral genomic RNA accumulation was reduced in MdBT2-overexpressing transgenic apple leaves but enhanced in MdBT2-antisense leaves compared to the wild type. Moreover, MdBT2 was found to interfere with the interaction between viral replication proteins 1a and 2apol by competitively interacting with 1a. Taken together, our results demonstrate that nitrate-inducible MdBT2 functions as a limiting factor in ApNMV viral RNA accumulation by promoting the ubiquitination and degradation of viral protein 1a and interfering with interactions between viral replication proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号