首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Much recent attention has been given to coral reef bleaching because of its widespread occurrence, damage to reefs, and possible connection to global change. There is still debate about the relationship between temperature and widespread bleaching. We compared coral reef bleaching at La Parguera, Puerto Rico to a 30-y (1966–1995) record of sea surface temperature (SST) at the same location. The last eight years of the La Parguera SST record have all had greater than average maximum temperatures; over the past 30 y maximum summer temperature has increased 0.7 °C. Coral reef bleaching has been particularly frequent since the middle 1980s. The years 1969, 1987, 1990, and 1995 were especially noteworthy for the severity of bleaching in Puerto Rico. Seven different annual temperature indices were devised to determine the extent to which they could predict severe coral bleaching episodes. Three of these, maximum daily SST, days >29.5 °C, and days >30 °C predict correctly the four years with severe bleaching. A log-log linear relationship was found between SST and the number of days in a given year above that SST at which severe coral beaching was observed. However, the intra-annual relationship between temperature and the incidence of bleaching suggests that no one simple predictor of the onset of coral bleaching within a year may be applicable. Accepted: 17 March 1998  相似文献   

2.
Evidence is presented that at least 60% of the 184 species of scleractinian corals found on reefs surrounding the Houtman Abrolhos Islands (Western Australia) participate in a late summer mass spawning. These populations are thus reproductively active, despite most species being at the extreme southern limit of their latitudinal range (28° 29°S). In the present study, coral mass spawning occurred in the same month on both temperate (Houtman-Abrolhos) and tropical (Ningaloo) reefs of Western Australia, despite more than two months difference in the timing of seasonal temperture minima between the two regions. This concurrence in the month of spawning suggests that temperature does not operate as a simple direct proximate cue for seasonal spawning synchrony in these populations. Seasonal variation in photoperiod may provide a similar and more reliable signal in the two regions, and thus might be more likely to synchronize the seasonal reproductive rhythms of these corals. Also there is overlap in the nights of mass spawning on the Houtman Abrolhos and tropical reefs of Western Australia, despite significant differences in tidal phase and amplitude between the two regions. This indicates that tidal cycle does not synchronize with the night(s) of spawning on these reefs. Spawning is more likely to be synchronised by lunar cycles. The co-occurrence of the mass spawning with spring tides in Houtman Abrolhos coral populations may be evidence of a genetic legacy inherited from northern, tropical ancestors. Micro-tidal regimes in the Houtman Abrolhos region may have exerted insufficient selective pressure to counteract this legacy.  相似文献   

3.
Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid in the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to differentiate juvenile habitats of winter flounder (Pseudopleuronectes americanus). Young-of-the-year (YOY) juvenile winter flounder were collected annually over a three-year period from 18 stations along the coast of Rhode Island, USA. Sagittal otoliths were removed from fish and analyzed for stable carbon (13C/12C or δ13C) and oxygen (18O/16O or δ18O) isotope ratios using continuous flow isotope ratio mass spectrometry. Differences in isotope ratios were observed among stations and along salinity gradients in the Narragansett Bay estuary and an estuarine river system (Narrow River). Overall, the isotope ratio patterns observed among stations were consistent over the three sampling years; however, differences were noted in isotope ratios and the magnitude of the isotope ratio gradients among years. Significant positive correlations were noted between salinity and δ13C for two of the three years. For each of the three years sampled there was a highly significant positive correlation (2002, r = 0.93, P < 0.01; 2003, r = 0.85, P < 0.01; 2004, r = 0.97, P < 0.01) between δ18O and the salinity of the collection site. Also, there was a significant negative correlation between the number of months of above average river flow and δ18O for the three sampling years (r = 0.99, P < 0.05). These findings suggest that yearly changes in the volume of freshwater inputs to these estuarine habitats may be related to the differences observed in otolith δ18O isotope ratios. Because of these year-to-year differences, sampling of each cohort may be necessary in order to use this isotopic technique for winter flounder connectivity studies.  相似文献   

4.
Titschack  J.  Zuschin  M.  Spötl  C.  Baal  C. 《Coral reefs (Online)》2010,29(4):1061-1075
This study explores the giant oyster Hyotissa hyotis as a novel environmental archive in tropical reef environments of the Indo-Pacific. The species is a typical accessory component in coral reefs, can reach sizes of tens of centimetres, and dates back to the Late Pleistocene. Here, a 70.2-mm-long oxygen and carbon isotope transect through the shell of a specimen collected at Safaga Bay, northern Red Sea, in May 1996, is presented. The transect runs perpendicularly to the foliate and vesicular layers of the inner ostracum near the ligament area of the oyster. The measured δ18O and δ13C records show sinusoidal fluctuations, which are independent of shell microstructure. The δ13C fluctuations exhibit the same wavelength as the δ18O fluctuations but are phase shifted. The δ18O record reflects the sea surface temperature variations from 1957 until 1996, possibly additionally influenced by the local evaporation. Due to locally enhanced evaporation in the semi-enclosed Safaga Bay, the δ18Oseawater value is estimated at 2.17‰, i.e., 0.3–0.8‰ higher than published open surface water δ18O values (1.36–1.85‰) from the region. The mean water temperature deviates by only 0.4°C from the expected value, and the minimum and maximum values are 0.5°C lower and 2.9°C higher, respectively. When comparing the mean monthly values, however, the sea surface temperature discrepancy between reconstructed and global grid datasets is always <1.0°C. The δ13C signal is weakly negatively correlated with regional chlorophyll a concentration and with the sunshine duration, which may reflect changes in the bivalve’s respiration. The study emphasises the palaeogeographic context in isotope studies based on fossils, because coastal embayments might not reflect open-water oceanographic conditions.  相似文献   

5.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

6.

Background

Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos.

Methodology/ Principal Findings

We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900–2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups.

Conclusions/ Significance

In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008–2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900–2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.  相似文献   

7.
Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world’s oceans. However, few historical records of land–ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land–ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land–ocean carbon flux in the context of land-use change and global climate change.  相似文献   

8.
Studies were performed of the carbon and nitrogen stable isotope (δ13C and δ15N) composition (δ13C and δ15N) of the corals Porites cylindrica and P. lutea (5 years after damaging the colonies by the bleaching events) and of epilithic algae settled onto damaged areas of coral colonies. Coral polyps and three epilithic algal communities (‘red algal turf, green algal turf and red calcified crusts’) were sampled along the boundary between communities of coral polyps and algal colonizers from differently illuminated habitats from 2 to 90% of incident surface photosynthetically active radiation (PAR0). It was found that communities with a predominance of red algae significantly differed from communities with a predominance of green algae in δ13C but not in δ15N values. An influence of habitat irradiance was found only for communities of coral polyps for δ13C and δ15N values: under bright light (70–90% PAR0) polyp tissues of both coral species were significantly enriched in heavy carbon isotopes and insignificantly in nitrogen isotopes (δ13C values difference ~4‰) relative to tissues of corals under lower light 15–50% PAR0. On the basis of these results we assumed that differences in light intensities in the habitat ranging from 15 to 90% PAR0 do not influence on accessibility of the main carbon and nitrogen sources for corals and algae, and exchange by these elements between organisms. We also assumed that the relative enrichment in the heavy carbon isotopes of coral tissues in high light is a result of decreased isotope fractionation (or the absence of fractionation in photosynthesis of their zooxanthellae).  相似文献   

9.
Functional aspects of biodiversity were investigated in a lowland tropical rainforest in French Guyana (5°2′N, annual precipitation 2200 mm). We assessed leaf δ15N as a presumptive indicator of symbiotic N2 fixation, and leaf and wood cellulose δ13C as an indicator of leaf intrinsic water-use efficiency (CO2 assimilation rate/leaf conductance for water vapour) in dominant trees of 21 species selected for their representativeness in the forest cover, their ecological strategy (pioneers or late successional stage species, shade tolerance) or their potential ability for N2 fixation. Similar measurements were made in trees of native species growing in a nearby plantation after severe perturbation (clear cutting, mechanical soil disturbance). Bulk soil δ15N was spatially quite uniform in the forest (range 3–5‰), whereas average leaf δ15N ranged from −0.3‰ to 3.5‰ in the different species. Three species only, Diplotropis purpurea, Recordoxylon speciosum (Fabaceae), and Sclerolobium melinonii (Caesalpiniaceae), had root bacterial nodules, which was also associated with leaf N concentrations higher than 20 mg g−1. Although nodulated trees displayed significantly lower leaf δ15N values than non-nodulated trees, leaf δ15N did not prove a straightforward indicator of symbiotic fixation, since there was a clear overlap of δ15N values for nodulated and non-nodulated species at the lower end of the δ15N range. Perturbation did not markedly affect the difference δ15Nsoil δ15Nleaf, and thus the isotopic data provide no evidence of an alteration in the different N acquisition patterns. Extremely large interspecific differences in sunlit leaf δ13C were observed in the forest (average values from −31.4 to −26.7‰), corresponding to intrinsic water-use efficiencies (ratio CO2 assimilation rate/leaf conductance for water vapour) varying over a threefold range. Wood cellulose δ13C was positively related to total leaf δ13C, the former values being 2–3‰ higher than the latter ones. Leaf δ13C was not related to leaf δ15N at either intraspecific or interspecific levels. δ13C of sunlit leaves was highest in shade hemitolerant emergent species and was lower in heliophilic, but also in shade-tolerant species. For a given species, leaf δ13C did not differ between the pristine forest and the disturbed plantation conditions. Our results are not in accord with the concept of existence of functional types of species characterized by common suites of traits underlying niche differentiation; rather, they support the hypothesis that each trait leads to a separate grouping of species. Received: 18 August 1997 / Accepted: 14 April 1998  相似文献   

10.
Stable isotopic ratios integrate ecosystem variability while reflecting change in both environmental and biological processes. At sites, where climate does not strongly limit tree growth, co-occurring trees may display large discrepancies in stable oxygen isotopic ratios (δ18O) due to the interplay between biological processes (competition for light and nutrients, individual tree physiology, etc.) and climate. For a better quantification of the isotope variability within and among trees, the climatic and/or individual tree effects on seasonal δ18O variations in precipitation, soil water, leaf water and leaf organic material (whole leaf, cellulose and starch) and annual δ18O variations in tree-ring cellulose for Fagus sylvatica (Fs), Quercus robur (Qr), Carpinus betulus (Cb) and Pinus sylvestris (Ps) were studied in a mature temperate forest in Switzerland, using a mixed linear regression model technique. Furthermore, the influence of environmental factors on δ18O was assessed by means of three common isotope fractionation models. Our statistical analysis showed that except for Ps, a greater portion of δ18O variance in leaf compounds can be explained by individual tree effects, compared to temperature. Concerning tree-ring cellulose, only Fs and Ps show a significant temperature signal (maximum 12% of the variance explained), while the individual tree effect significantly explains δ18O for all species for a period of 38 years. Large species differences resulted in a limited ability of the isotope fractionation models to predict measured values. Overall, we conclude that in a diverse mixed forest stand, individual tree responses reduce the potential extraction of a temperature signal from δ18O.  相似文献   

11.
High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.  相似文献   

12.
The response of coral-reef ecosystems to contemporary thermal stress may be in part a consequence of recent or historical sea-surface temperature (SST) variability. To test this hypothesis, we examined whether: (i) there was a relationship between the historical frequency of SST variability and stress experienced during the most recent thermal-stress events (in 1998 and 2005–2006) and (ii) coral reefs that historically experienced frequent thermal anomalies were less likely to experience coral bleaching during these recent thermal-stress events. Examination of nine detrended coral δ18O and Sr/Ca anomaly records revealed a high- (5.7-year) and low-frequency (>54-year) mode of SST variability. There was a positive relationship between the historical frequency of SST anomalies and recent thermal stress; sites historically dominated by the high-frequency mode experienced greater thermal stress than other sites during both events, and showed extensive coral bleaching in 1998. Nonetheless, in 2005–2006, corals at sites dominated by high-frequency variability showed reduced bleaching, despite experiencing high thermal stress. This bleaching resistance was most likely a consequence of rapid directional selection that followed the extreme thermal event of 1998. However, the benefits of regional resistance could come at the considerable cost of shifts in coral species composition.  相似文献   

13.
S. Ohsawa  Y. Yusa 《Limnology》2000,1(2):143-149
The stable isotope ratios of hydrogen and oxygen were measured for rainwater samples from Typhoon No. 13, which struck Japan on September 1993, and Typhoon No. 6, which passed in July 1996. Rainwater was collected every hour over 2- to 3-day periods at Beppu, Japan (33°16′N, 131°29′E), which lies on or close to the typhoon routes. The deuterium excess parameters (δD – 8 ·δ18O) of the rainwaters vary over wide ranges from 19.22 to 1.52 for Typhoon No. 13, 1993, and from 6.02 to −8.10 for Typhoon No. 6, 1996, respectively. Rainwaters with higher d-values precipitated in the forward parts of the typhoons. This is ascribed to the possibility that the water vapors supplied by the bottom air currents from the front (rear) of the typhoons may be originally formed by rapid (gentle) evaporation of seawater. Symmetrical patterns of spatial δD and δ18O distributions within the typhoon precipitations, as estimated from the variations in the isotope ratios of the typhoon rainwaters, should appear from a continuous isotopic fractionation of water vapors with the bottom air currents converging toward the typhoon center. The weighted means of δD and δ18O of the typhoon precipitations are more negative than those of ordinary rainfall, suggesting that an isotopic influence of typhoon precipitation on surface waters, e.g., river, stream, lake, and spring waters, may be important. Received: January 22, 2000 / Accepted: March 24, 2000  相似文献   

14.
To determine what happens to scleractinian corals that have been killed by black band disease (BBD), massive corals with BBD were monitored for 11 years on a shallow reef (<10 m depth) in St. John, US Virgin Islands. Small quadrats (0.039 m2) were used to compare the rates of scleractinian recruitment to the skeletons of corals killed by either BBD or physical disturbance (Hurricane Hugo 1989). Coral recruitment was also quantified on the adjacent fringing reef using larger quadrats (0.25 m2) to detect possible biases associated with using small, permanent quadrats to assess recruitment to BBD-killed corals. Of 28 tagged colonies with BBD in 1988, 43% were lost to Hurricane Hugo in 1989, 7% were lost to unknown causes between 1991 and 1992, and 14 were monitored annually for 11 years; of these, 71% were dead and still in their original growth position in 1998. Between 1988 and 1997, corals recruited to the BBD-killed surfaces at a rate of 1.1 ± 0.3 recruits · 0.039 m−2 · decade−1 (mean ± SE, n = 14), although mortality reduced the density to 0.3 ± 0.2 recruits · 0.039 m−2 by 1997. The rate of recruitment and the taxonomic composition of the coral recruits to BBD-killed corals were indistinguishable statistically from those to corals killed by Hurricane Hugo. This demonstrates that BBD creates space that is functionally the same as other dead coral surfaces in providing a substratum for coral recruitment. However, because coral recruits are dispersed widely, clumped in distribution and temporally variable in density on the fringing reef as a whole, it is unlikely that they will be found on monitored coral colonies that have been killed by BBD. While this hypothesis is consistent with the higher density of recruits on the fringing reef compared with BBD-killed corals, further studies are required to investigate alternative explanations such as the role of substratum age in favoring recruitment to surfaces other than those killed recently by BBD. Accepted: 26 August 1999  相似文献   

15.
Concentration and isotopic composition (δ13C and δ18O) of ambient CO2 and water vapour were determined within a Quercus petraea canopy, Northumberland, UK. From continuous measurements made across a 36-h period from three heights within the forest canopy, we generated mixing lines (Keeling plots) for δa 13CO2, δa C18O16O and δa H2 18O, to derive the isotopic composition of the signal being released from forest to atmosphere. These were compared directly with measurements of different respective pools within the forest system, i.e. δ13C of organic matter input for δa 13CO2, δ18O of exchangeable water for δa C18O16O and transpired water vapour for δa H2 18O. [CO2] and δa 13CO2 showed strong coupling, where the released CO2 was, on average, 4 per mil enriched compared to the organic matter of plant material in the system, suggesting either fractionation of organic material before eventual release as soil-respired CO2, or temporal differences in ecosystem discrimination. δa C18O16O was less well coupled to [CO2], probably due to the heterogeneity and transient nature of water pools (soil, leaf and moss) within the forest. Similarly, δa H2 18O was less coupled to [H2O], again reflecting the transient nature of water transpired to the forest, seen as uncoupling during times of large changes in vapour pressure deficit. The δ18O of transpired water vapour, inferred from both mixing lines at the canopy scale and direct measurement at the leaf level, approximated that of source water, confirming that an isotopic steady state held for the forest integrated over the daily cycle. This demonstrates that isotopic coupling of CO2 and water vapour within a forest canopy will depend on absolute differences in the isotopic composition of the respective pools involved in exchange and on the stability of each of these pools with time. Received: 21 March 1998 / Accepted: 10 December 1998  相似文献   

16.
Annual rings are generally not anatomically distinct in trees growing in the humid tropics. The possibility to use radial variation in stable isotopes (δ18O and δ13C) for the identification of annual rings in these trees was investigated in two species growing in the tropical rainforest of Central Guyana, Carapa guianensis and Goupia glabra. The climate is characterised by an annual precipitation of 2,700 mm that is distributed over two rainy and two dry seasons. Cores were taken from trees of measured diameter increment rates. High-resolution tangential sections in radial direction were dissected from these cores and isotopic ratios were measured on whole wood. Variation in δ13C was about 1‰ at an annual scale, whereas δ18O showed two to four times larger annual excursions. The minima in δ18O were selected as primary indicators of annual boundaries at the main wet season when also δ18O of precipitation water has its minimum. The minima in δ13C coincided often with these. The simultaneous occurrence is consistent with increased discrimination against 13C at high water availability. They were used as secondary criteria. Annual rings could thus be identified with reasonable certainty in both species from radial variation in isotopic ratios as verified with measured diameter increment rates. The short sequence covered in the analysis did not show clear correlation with the available precipitation data for the area. The method supplemented with other dating methods may prove to be practically useful for identifying annual rings and applying classical dendrochronology when more cost effective automatic sampling devices become available.  相似文献   

17.
The use of the sclerochronology and geochemistry of a New Caledonian (South West Pacific) giant clam Hippopus hippopus shell as markers of environmental changes has been investigated. Growth increment thickness and δ18O ratios were measured on 4 years of shell growth of a modern specimen. During the last year, this giant clam was placed in a tank equipped for high-frequency environmental monitoring. Because shell is secreted in isotopic equilibrium with the seawater, the palaeo-sea surface temperature (SST) equation obtained faithfully reproduces the seasonal SST amplitudes. Growth increment thickness changes are seasonal and, for more than 50%, governed by the SST changes. The transplantation from the in situ site to the tank and reproduction events reduces the strength of growth and SST relationships. Nevertheless, growth increment thickness measurements can give information on average, minimal and maximal past SST in diagenetically altered shells. A peculiar growth event characterized by a short, drastic and significant decrease has been identified and attributed to an intense upwelling event. This study further highlights the use of giant clam shell δ18O as a SST proxy but also demonstrates that H. hippopus growth increment thickness changes provide useful information on past environmental settings and on exceptional events, for example, intense upwellings.  相似文献   

18.
Dodd  M. B.  Lauenroth  W. K.  Welker  J. M. 《Oecologia》1998,117(4):504-512
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs. Received: 23 December 1997 / Accepted: 16 September 1998  相似文献   

19.
Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size–related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore), Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C′ values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.  相似文献   

20.
The Coral Triangle encompasses an extensive region of coral reefs in the western tropical Pacific with marine resources that support millions of people. As in all other reef regions, coral reefs in the Coral Triangle have been impacted by anomalously high ocean temperature. The vast majority of bleaching observations to date have been associated with the 1998 La Niña phase of ENSO. To understand the significance of ENSO and other climatic oscillations to heat stress in the Coral Triangle, we use a 5‐km resolution Regional Ocean Model System for the Coral Triangle (CT‐ROMS) to study ocean temperature thresholds and variability for the 1960–2007 historical period. Heat‐stress events are more frequent during La Niña events, but occur under all climatic conditions, reflecting an overall warming trend since the 1970s. Mean sea surface temperature (SST) in the region increased an average of ~ 0.1 °C per decade over the time period, but with considerable spatial variability. The spatial patterns of SST and heat stress across the Coral Triangle reflect the complex bathymetry and oceanography. The patterns did not change significantly over time or with shifts in ENSO. Several regions experienced little to no heat stress over the entire period. Of particular interest to marine conservation are regions where there are few records of coral bleaching despite the presence of significant heat stress, such as in the Banda Sea. Although this may be due to under‐reporting of bleaching events, it may also be due to physical factors such as mixing and cloudiness, or biological factors that reduce sensitivity to heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号