首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Summary New petrographic and isotopic data from inoceramid bivalve shells and belemnite rostra from the lower Campanian and belemnite rostra from the mid-upper Maastrichtian of the Marambio Group, James Ross Basin, Antarctica are presented. Most of the inoceramid data were processed from shell fragments of the large formAntarcticeramus rabotensis (Crame and Luther) at the stratigraphic level marking the extinction of the inoceramids in the James Ross Basin (uppermost early Campanian-basal late Campanian). Standard transmitted light microscopy and cathodoluminescence (CL) studies in thin sections ofA. rabotensis show clear evidence of environmental stress, which is reflected as marked growth breaks in the shell banding of this large inoceramid bivalve. At Redonda Point, CL and the mean oxygen isotopic value (δ18O=-3.11‰ 3 (PDB); n=11; t°=25.4°C) indicate a varied degree of diagenetic modification, but without any evidence of neomorphism along the prismatic microstructures. Early Campanian belemnite rostra are much less diagenetically modified (at the Brandy Bay section; and the Santa Marta section; δ18O=-0.50‰ (PDB); n=5; t°=14.0°C and 3 δ18O=-0.94‰ (PDB); n=21; t°=15.8°C) and are non luminescent 3 except for localized, organic-rich bands. The mean oxygen isotopic value for mid-late Maastrichtian belemnite rostra (at the Seymour Island section; δ18O=-0.11‰ 3 (PDB); n=5; t°=12.5°C) indicates a substantial drop in the sea-water paleotemperature, suggesting a causal relationship between the early extinction of the inoceramid bivalves in high latitudes of the Southern Hemisphere and the falling sea-water temperature.  相似文献   

2.
The δ15N and δ13C values of particulate organic material (POM) were analyzed from 35 sites in the Florida Keys over the time interval 2000 to 2002. The sites within the study area were delineated into nine transects stretching from Key West to Key Largo. Each transect consisted of three to five sites extending from close to the Keys to the edge of the reef tract. The POM had mean δ15N and δ13C values of +3.6‰ (σ = ±3.2‰) and −19.9‰ (σ = ±0.6‰) respectively. Over the study period there were no statistically significant changes in δ15N, δ13C, or C:N. For the majority of the sampling dates, the δ13C values showed a distinct inshore (δ13C = −18.3‰, σ = ±1.0‰) to offshore gradient (δ13C = −21.4, σ = ±0.9‰). In contrast, the δ15N values showed no consistent patterns related to the distance from land. The more positive δ13C values of the nearshore samples suggest that the source of the carbon and the nitrogen in the POM in the nearshore was mainly derived from the degradation of seagrass detritus and not from the input of anthropogenically derived material from the Florida Keys. In contrast, the POM on the outer reef was dominated by marine plankton. As mineralization and nitrification of the organic nitrogen pool are major contributors to the dissolved inorganic nitrogen in the water column, it is unlikely that variations in the δ15N of the algae and other benthic organisms reported in the Florida Keys are related to the input of sewage.  相似文献   

3.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

4.
The aragonite shells of 55 mollusc specimens from the late Early and early Middle Miocene of two palaeolakes of the Dinaride Lake System (DLS) are analysed for their δ18O and δ13C signatures. The data set has a bimodal distribution with a prominent peak between −3 and −4‰ for both isotopes and a second much weaker peak at more depleted values of c. −9 to −7‰. Taxa with ‘heavy’ values are interpreted to represent the inhabitants of the shores or shallow areas of the lake. Depleted values are attributed to species preferring freshwater habitats of springs or small rivulets, thus representing the freshwater end-member. The overall rather high values in both stable isotopes result from a combination of evaporation effects and the influx of already isotopically heavy freshwater from the karstic catchment area. Thus, the DLS is interpreted as a closed freshwater system without marine influence but with enough contribution of freshwater to keep the oxygen values close to −5‰. Mean lake surface water temperatures, based on the δ18Oshell values, excluding the freshwater end-member taxa, range around roughly 19–21°C. Despite the problems in calculating these temperatures, the values are in agreement with mean annual air temperatures deduced from the palaeobotanic record by applying the Coexistence Approach method. The seasonal range was around 10–11°C and is mainly recorded in shells from lake settings. Taxa with freshwater end-member signatures lack this range due to the more stable temperature regime and less fluctuating dissolved inorganic carbon (DIC) pool. Congeneric species from the same stratigraphic horizon often display discrete but different isotope signatures. This fact suggests habitat segregation and might be a major factor for sympatric speciation and the endemic radiation within the mollusc fauna of the DLS.  相似文献   

5.
We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = −26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = −28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = −14.6 ± 0.1 ‰), its isotopic composition (δ13C = −21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = −28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.  相似文献   

6.
Primary production by phytoplankton in the eutrophic Mikawa Bay, Japan, was studied by simultaneous measurements of natural carbon isotope ratio (δ 13C) and short-term carbon uptake rates (13C tracer study) of size-fractionated nannoplankton (<10 μm) and net plankton (>10 μm) samples. Short-term photosynthetic rates, which represent the physiological state of algae, were variable regardless of standing stock sizes. Theδ 13C values of particulate organic carbon (POC) in June and July displayed horizontal variations for both the net plankton fraction (−19.8 to −12.7‰) and the nannoplankton fraction (−22.0 to −12.8‰). For both fractions, low concentrations of POC had more negativeδ 13C values (−22 to −18‰). Highδ 13C values for the net plankton were found when POC concentrations were much higher, due to red tide. This suggests that the increase in algal standing crop for the net plankton fraction resulted from accelerated photosynthetic activity. However the nannoplankton fractions with higher POC values have relatively lowδ 13C values.  相似文献   

7.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

8.
The natural relationship13C/12C determined in three soil profiles under grass vegetation indicated a depletion in organic13C at depth: theδ 13C was between −18‰ and −15‰ in the A horizons and ranged from −18 to −22‰ at depth. Previous work showed that in forest soils, whereδ 13C was near −28‰ in the upper horizon, there was, on the contrary, a relative enrichment of the lower strata. This meant thatδ 13C, initially different in the various topsoils, became more equal at depth. Comparison between dark, deep horizons (sombric horizons), which are certainly of illuvial origine, would confirm this:δ 13C of grassland and a forest sombric horizon were almost equal at around −22‰. These results might mean that, in natural ecosystems, the isotopic carbon composition of the soil underlying humus would be independent of the vegetation type. This would have practical implications for the use of13C as a tracer for soil organic matter studies.  相似文献   

9.
The carbon, oxygen, and strontium isotope composition of enamel from teeth of large Miocene herbivorous mammals from Sandelzhausen (MN5, late Early/early Middle Miocene) in the North Alpine foreland basin, were analyzed to infer diet and habitat. The mean enamel δ13C value of −11.4 ± 1.0‰ (n = 53) for the nine taxa analyzed (including proboscideans, cervids, suids, chalicotheres, equids, rhinocerotids) indicates a pure C3 plant diet for all mammals. 87Sr/86Sr ratios of ~0.710 higher than those from teeth of the western Molasse Basin (0.708–0.709) seem to indicate preferential feeding of the mammals in the northeastern Molasse Basin. The sympatric herbivores have different mean δ13C and δ18O values which support diet partitioning and/or use of different habitats within a C3 plant ecosystem. Especially the three sympatric rhinoceroses Plesiaceratherium fahlbuschi, Lartetotherium sansaniense, and Prosantorhinus germanicus show clear partitioning of plants and/or habitats. The palaeomerycid Germanomeryx fahlbuschi was a canopy folivore in moderately closed environments whereas Metaschizotherium bavaricum (Chalicotheriidae) and P. germanicus (Rhinocerotidae) were browsers in more closed forest environments. The horse Anchitherium aurelianense was probably a more generalized feeder than assumed from its dental morphology. The forest hog Hyotherium soemmeringi has the highest δ13C and lowest δ18O value of all analyzed taxa, possibly related to a frugivorous diet. Most taxa were water-dependent browsers that record meteoric water δ18O values of about −5.6 ± 0.7‰ Vienna Standard Mean Ocean Water (VSMOW). Using a modern-day mean annual air temperature (MAT)– relation a MAT of 19.3 ± 1.5°C can be reconstructed for Sandelzhausen. A Gomphotherium subtapiroideum tusk serially sampled for δ18O values does not record a clear pattern of seasonality. Thus most taxa were C3 browsers in a forested and humid floodplain environment in the Molasse Basin, which experienced a warm-temperate to subtropical climate and possibly low seasonality.   相似文献   

10.
Diurnal variations of needle water isotopic ratios in two pine species   总被引:1,自引:0,他引:1  
Diurnal fluctuations of leaf water isotope ratios (δ18O and δD) were measured for Jeffrey (Pinus jeffreyi Balf.) and lodgepole (Pinus contorta Douglas ex Louden) pine. Two trees per species were sampled every few hours on 15–16 October 2005 and 19–20 June 2006. Diurnal gas exchange was measured during the summer sampling. In fall 2005, leaf water δ18O ranged from 0.7 to 9.0‰, and leaf water δD ranged from −70 to −50‰. In summer 2006, leaf water δ18O ranged from 7.7 to 20.7‰, and leaf water δD ranged from −61 to −24‰. Diurnal variation of leaf water isotope values typically reached a maximum in early afternoon, began decreasing around midnight, and reached a minimum in mid-morning. Both periods showed a high degree of enrichment relative to source water, with leaf water–source water enrichments ranging up to 37.8‰ for δ18O, and up to 95‰ for δD. Leaf water enrichment varied by season with summer enrichment being greater than fall enrichment. A steady-state model (i.e., modified Craig–Gordon modeling) for leaf water isotope compositions did not provide a good fit to measured values of leaf water. In summer, a non-steady state model provided a better fit to the measured data than the steady-state model. Our findings demonstrate substantial leaf water enrichment above source water and diurnal variations in the isotopic composition of leaf water, which has application to understanding short-term variability of atmospheric gases (water vapor, CO2, O2), climate studies based on the isotopic composition of tree rings, and ecosystem water fluxes.  相似文献   

11.
Stable isotope composition (δ13C and δ18O) was analysed in mineral incrustation of Chara rudis and surrounding waters. This macroalga forms dense and extensive charophyte meadows and may significantly contribute to the calcium carbonate precipitation and deposition of marl lake sediments. The study aimed to find out if charophyte calcium carbonate was precipitated in an isotopic equilibrium with lake water and if the precipitation was related to the environmental conditions. Two apical internodes of 10 individuals of C. rudis were collected monthly between June and late October 2008 at three permanent study sites (1.0 m, 1.5 m and 2.0 m deep) in a small (15.1 ha) and shallow (mean depth: 4.3 m) mid-forest lake with extensively developed charophyte meadows (Lake Jasne, mid-Western Poland). Basic physical–chemical analyses were performed at each study site, and water samples for further laboratory determinations, including stable isotope analyses, were collected from the above searched C. rudis stands and, simultaneously, at three comparative sites in the macrophyte-free pelagial. The difference in δ13C between incrustation and water from above C. rudis exceeded 2‰ V-PDB at each site. In the case of δ18O, it exceeded 2‰ between July and September. Accordingly, it is postulated that calcium carbonate was not precipitated in an isotopic equilibrium with lake water. Incrustation was enriched in heavier carbon isotope, 13C, and water was enriched in 18O. δ13C of incrustation and DIC were positively correlated, whereas negative relation was found between δ18O of incrustation and water. Several dependencies were found with water chemistry above the plants. The content of mineral incrustation in Chara dry weight had negative influence on the δ18O but not on the δ13C. Community depth, structure and PVI had no effect. No significant differences appeared between isotope composition in the pelagic zone and Chara stands.  相似文献   

12.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

13.
The food webs of rocky infra-littoral ecosystems in the Mediterranean have been little studied. In this investigation stable isotopes and dietary data were compared in an attempt to describe features of the food webs concerned. δ13C and δ15N were determined for plants, invertebrates and fishes from the Bay of Calvi, Corsica. Dietary data were derived from the literature. δ13C of plants ranged from –8.59‰ to –33.74‰, of benthic invertebrates from –17.0‰ to –20.52‰, of planktonic invertebrates from –20.08‰ to –22.34‰ and of fishes from –16.27‰ to –19.59‰. δ15N was generally greater at higher trophic levels. δ15N of plants was 0.95–2.92‰, of benthic invertebrates 1.69–6.54‰, of planktonic invertebrates 3.51–6.82‰ and of fishes 4.63–9.77‰. 13C enrichment tended to be associated with benthic food chains and 13C depletion with planktonic chains. Stable-isotope data suggested more varied diets for many species than implied by gut-contents data. Omnivory and trophic plasticity were widespread, and many consumers fed lower down the food chain than previous studies had suggested. Both stable-isotope and gut-contents analysis resolved differences between fishes feeding on planktonic and benthic prey and indicated that the herbivorous fish Sarpa salpa fed on a diet substantially different from that of other fishes. Zooplankton were important in the diets of several consumers (both primary and secondary), as was plankton derived detritus. One species of fish previously identified as planktivorous was shown to feed largely on benthic organisms, whilst several species of benthic invertebrates may feed on plankton-derived detritus. Although herbivores seemed to obtain most of their C from macroalgae, δ15N data suggested that many of these animals supplemented their intake of N, although gut-contents analysis did not provide evidence for such uptake. The isotopic data have elucidated several features of the food web which we would not otherwise have detected. Received: 26 April 1999 / Accepted: 24 September 1999  相似文献   

14.
In marine food web studies, stable isotopes of nitrogen (δ15N) and carbon (δ13C) are widely used to estimate organisms’ trophic levels (TL) and carbon sources, respectively. For smaller organisms, whole specimens are commonly analyzed. However, this “bulk method” involves several pitfalls since different tissues may fractionate stable isotopes differently. We compared the δ15N and δ13C values of exoskeleton versus soft tissue, in relation to whole specimens, of three common Arctic amphipods in Svalbard waters: the benthic Anonyx nugax, the sympagic (ice-associated) Gammarus wilkitzkii and the pelagic Themisto libellula. The δ15N values of the exoskeletons were significantly lower than those of the soft tissues for A. nugax (10.5 ± 0.7‰ vs. 15.7 ± 0.7‰), G. wilkitzkii (3.3 ± 0.3‰ vs. 8.3 ± 0.4‰) and T. libellula (8.6 ± 0.3‰ vs.10.8 ± 0.3‰). The differences in δ13C values between exoskeletons and soft tissues were insignificant, except for A. nugax (−21.2 ± 0.2‰ vs. −20.3 ± 0.2‰, respectively). The δ15N values of whole organisms were between those of the exoskeletons and the soft tissues, being similarly enriched in 15N as the exoskeletons (except G. wilkitzkii) and depleted in 15N by 1.2–3.7‰ compared to the soft tissues. The δ15N-derived TLs of the soft tissues agreed best with the known feeding preferences of the three amphipods, which suggest a potential underestimation of 0.5–1.0 TL when stable isotope analyses are performed on whole crustaceans with thick exoskeletons. The insignificant or small differences in δ13C values among exoskeletons, soft tissues and whole specimens, however, suggest low probability for misinterpretations of crustaceans’ primary carbon source in marine ecosystems with distinctly different δ13C-carbon sources.  相似文献   

15.
The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.  相似文献   

16.
Size restricted carbon isotopes (δ13C) are used to track changes in the ontogenetic life strategies of two species of extinct planktonic foraminifera and demonstrate that the species Morozovelloides crassatus lost their photosymbiotic association prior to their extinction in the latest middle Eocene. M. crassatus exhibit a strong positive correlation between test size and δ13C between 39.5 Ma and 38.7 Ma and a Δδ13C shift of 1.0‰/100 μm, this is analogous with modern species that possess an association with algal photosymbionts. Turborotalia cerroazulensis is interpreted as an asymbiotic, thermocline dweller and consistently shows no size related δ13C trends and greater δ18O values in comparison to Morozovelloides. We show a long-term (1.5 million year) deterioration of Morozovelloides ecology that culminated in their extinction at 38.021 Ma. The Δδ13C /100 μm in M. crassatus is dramatically reduced from 1.0‰ at 39.53 to only 0.2‰ at 38.026 Ma, 5 kyr before their extinction. The decline in ontogenetic δ13C suggests diminished photosymbiotic activity (bleaching) and disruption of foraminiferal ecology in the interval preceding their extinction. We conclude that the demise of Morozovelloides was directly related to the deterioration of photosymbiotic partnerships with algae.  相似文献   

17.
The Late Eocene ‘Whiskey Creek’ deposit (Pysht Formation, Olympic Penisula, Washington State) formed at a methane-seep. Early diagenetic micrites and aragonite cement have δ13C values as low as −36‰ indicating that the seepage fluids contained methane. With respect to micrite samples, low δ13C values correlate with relatively high δ13O values andvice versa. Ongoing micrite formation after the cessation of the seepage during increased burial might have altered the isotopic composition of the microcrystalline carbonates toward lower δ13O values and higher δ13C values. Alternatively, the trend in isotope values may reflect a change in the composition of seepage fluids. The principal difference between these scenarios is the duration of seepage with respect to micrite formation. Two petrographically similar varieties of blocky calcite spar are related to different carbonate sources. The δ13C values range from −32 to −29‰ for one type of blocky spar and are either the result of methane oxidation or indicate thermal decarboxylation of organic matter. Low δ18O values are in favour of the latter. For the other type of spar, δ13C values as high as +6‰ indicate carbonate formation within the zone of methanogensis. The ‘Whiskey Creek’ limestone exhibits a chaotic fabric produced by a variety of processes, including bioturbation, concretionary carbonate formation, earlyin situ brecciation, carbonate corrosion, and late fracturing of the rock. Two varieties of micrite aggregates are responsible for the nodular fabric of the limestone. Smoothly-shaped pyritiferous micrite nodules are of diagenetic origin and formed in a manner similar to that which produces carbonate concretions. Apart from being induced by anaerobic oxidation of methane, their formation is proposed to be linked to iron reduction and sulphide formation. The second, dominant variety is represented by irregularly-shaped, nodular to angular micrite aggregates surrounded by massive rims of pyrite, resulting from carbonate corrosion. A pure, fluorescent seam-micrite, constructive in origin, lines cavities or surrounds micritic aggregates.  相似文献   

18.
Stable isotope ratios of sulfur (34S/32S), carbon (13C/12C), and nitrogen (15N/14N) were analyzed in the soft tissues of 12 common species of fish from the near-shore waters of the Peter the Great Bay in the Sea of Japan. The average δ13C values of individual species varied from −20.7‰ for planktivorous fish to −16.8‰ for benthivorous fish, reflecting the growing relative contribution of benthic primary producers to fish nutrition. The majority of the various species representatives studied can be assigned to one trophic level, as indicated by their narrow range of δ15N values (9.9 to 12.6‰). Large interspecific variations were found in the sulfur stable isotope ratios of fish (the mean δ34S values ranged from 11.2 to 19.5‰). This is the result of the different contributions to fish nutrition of infaunal invertebrates that are depleted in 34S due to the microbial food chain of the bottom sediments.  相似文献   

19.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

20.
Semi-labile dissolved organic carbon (DOC) plays an important role in the transport and hypolimnetic remineralization of carbon in large freshwater lakes. However, sources of semi-labile DOC in lakes remain unclear. This study used a carbon stable isotope approach to examine relative contributions of autochthonous and allochthonous sources to semi-labile DOC. Vertical and seasonal variations in the concentration and carbon stable isotope ratio (δ13C) of DOC were determined in large (surface area 674 km2; maximum depth 104 m), monomictic Lake Biwa. A sharp vertical gradient of δ13C of DOC (δ13C-DOC) during the stratification period [mean ± standard error (SE) −25.5 ± 0.1 and −26.0 ± 0.0‰ in the epi- and hypolimnion, respectively] indicated the accumulation of 13C-rich DOC in the epilimnion. Vertical mixing explained the intermediate values of δ13C-DOC (−25.7 ± 0.0‰) measured throughout the water column during the overturn period. Both DOC concentration and δ13C-DOC decreased in the hypolimnion during stratification, indicating selective remineralization of 13C-rich DOC. Using a two-component mixing model, we estimated the δ13C value of semi-labile DOC to be −22.2 ± 0.3‰, which was close to the δ13C of particulate organic carbon collected in the epilimnion during productive seasons (−22.7 ± 0.7‰) but much higher than the δ13C-DOC in river waters (−26.5 ± 0.1‰). Semi-labile DOC appeared to be mainly autochthonous in origin, produced by planktonic communities during productive seasons. The spatiotemporal uncoupling between production and remineralization of semi-labile DOC implies that hypolimnetic oxygen consumption may be affected by pelagic primary production during productive seasons of the preceding year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号