首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified.  相似文献   

2.
3.
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.  相似文献   

4.
Adrenoleukodystrophy (ALD), an X-linked inherited metabolic disorder, is the most frequent inborn peroxisomal disease. It leads to demyelination in the central and peripheral nervous system. Defective -oxidation of saturated very long chain fatty acids (VLCFAs; C22:0–C26:0) in peroxisomes has been shown to lead to an accumulation of VLCFAs in leukoid areas of the central nervous system, peripheral nerves, adrenal gland, and blood. The ALD gene has been recently identified and encodes a 745-amino-acid protein. We screened patients with adrenoleukodystrophy/adrenomyeloneuropathy (ALD/AMN) from 20 kindreds for mutations in the ALD gene. Eleven missense and two nonsense mutations, five deletions, and one insertion were detected by direct sequencing of eight reverse transcribed fragments of the ALD-gene mRNA. Four mutations could be shown to be de novo. All mutations could be confirmed in carriers by sequencing genomic DNA. No correlation between the type of mutation and the severity of the phenotype could be observed. The mutations were not detected in the ALD gene of 30 healthy persons.  相似文献   

5.
Adrenoleukodystrophy (ALD) is an X-linked disease, characterised by an alteration of the peroxisomal -oxidation of the very long chain fatty acids. The ALD gene has been identified and mutations have been detected in ALD patients. We report here a new missense mutation in the ALD gene of a male patient, predicting a tyrosine to serine substitution at codon 174 (mutation Y174S). The mother of the ALD patient does not have the Y174S mutation in her leukocyte DNA, indicating that Y174S arose de novo in the patient. Y174S is the first reported de novo mutation in the ALD gene.  相似文献   

6.
X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disease. The two main clinical phenotypes of X-ALD are adrenomyeloneuropathy (AMN) and inflammatory cerebral ALD that manifests either in children or more rarely in adults. About 65% of heterozygote females develop symptoms by the age of 60years. Mutations in the ABCD1 gene affect the function of the encoded protein ALDP, an ATP-binding-cassette (ABC) transporter located in the peroxisomal membrane protein. ALDP deficiency impairs the peroxisomal beta-oxidation of very long-chain fatty acids (VLCFA) and facilitates their further chain elongation by ELOVL1 resulting in accumulation of VLCFA in plasma and tissues. While all patients have mutations in the ABCD1 gene, there is no general genotype-phenotype correlation. Environmental factors and a multitude of modifying genes appear to determine the clinical manifestation in this monogenetic but multifactorial disease. This review focuses on the clinical, biochemical, genetic and pathophysiological aspects of X-ALD. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

7.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

8.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases caused by progressive degeneration of the photoreceptor cells. Using autozygosity mapping, we identified two families, each with three affected siblings sharing large overlapping homozygous regions that harbored the IMPG2 gene on chromosome 3. Sequence analysis of IMPG2 in the two index cases revealed homozygous mutations cosegregating with the disease in the respective families: three affected siblings of Iraqi Jewish ancestry displayed a nonsense mutation, and a Dutch family displayed a 1.8 kb genomic deletion that removes exon 9 and results in the absence of seven amino acids in a conserved SEA domain of the IMPG2 protein. Transient transfection of COS-1 cells showed that a construct expressing the wild-type SEA domain is properly targeted to the plasma membrane, whereas the mutant lacking the seven amino acids appears to be retained in the endoplasmic reticulum. Mutation analysis in ten additional index cases that were of Dutch, Israeli, Italian, and Pakistani origin and had homozygous regions encompassing IMPG2 revealed five additional mutations; four nonsense mutations and one missense mutation affecting a highly conserved phenylalanine residue. Most patients with IMPG2 mutations showed an early-onset form of RP with progressive visual-field loss and deterioration of visual acuity. The patient with the missense mutation, however, was diagnosed with maculopathy. The IMPG2 gene encodes the interphotoreceptor matrix proteoglycan IMPG2, which is a constituent of the interphotoreceptor matrix. Our data therefore show that mutations in a structural component of the interphotoreceptor matrix can cause arRP.  相似文献   

9.
X-Linked Adrenoleukodystrophy: Genes,Mutations, and Phenotypes   总被引:12,自引:0,他引:12  
X-linked adrenoleukodystrophy (X-ALD) is a complex and perplexing neurodegenerative disorder. The metabolic abnormality, elevated levels of very long-chain fatty acids in tissues and plasma, and the biochemical defect, reduced peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity, are ubiquitous features of the disease. However, clinical manifestations are highly variable with regard to time of onset, site of initial pathology and rate of progression. In addition, the abnormal gene in X-ALD is not the gene for VLCS. Rather, it encodes a peroxisomal membrane protein with homology to the ATP-binding cassette (ABC) transmembrane transporter superfamily of proteins. The X-ALD protein (ALDP) is closely related to three other peroxisomal membrane ABC proteins. In this report we summarize all known X-ALD mutations and establish the lack of an X-ALD genotype/phenotype correlation. We compare the evolutionary relationships among peroxisomal ABC proteins, demonstrate that ALDP forms homodimers with itself and heterodimers with other peroxisomal ABC proteins and present cDNA complementation studies suggesting that the peroxisomal ABC proteins have overlapping functions. We also establish that there are at least two peroxisomal VLCS activities, one that is ALDP dependent and one that is ALDP independent. Finally, we discuss variable expression of the peroxisomal ABC proteins and ALDP independent VLCS in relation to the variable clinical presentations of X-ALD.  相似文献   

10.
X-连锁肾上腺 脑白质营养不良基因(ALD基因)编码的ALD蛋白(ALDP)是4种人类ABCD转运蛋白之一,为一种半ABC转运蛋白,既有ABC(ATP binding cassette)转运蛋白的共有特征,又有过氧化物酶体膜蛋白的特点. 其功能可能是将胞浆中极长链饱和脂肪酸(VLCFA)或其衍生物转运到过氧化物酶体内,并在其中进行β氧化. 已报道的ALD基因突变有900多个,其后果多种多样,但最终都使VLCFA或其衍生物无法进入过氧化物酶体,从而使VLCFA在体内蓄积. 作者认为,ALDP是研究ABCD转运蛋白,乃至所有ABC转运蛋白的一个极好模型.  相似文献   

11.
12.
We report the molecular characterization of two novel galactosemia mutations that exhibit different molecular phenotypes. Both are of the missense type with low or no residual enzyme activity. The R148W mutation results in an unstable protein, although messenger RNA is still produced. In contrast, the L195P mutation produces stable but inactive immunoreactive protein. The R148W mutation alters an amino acid that is not evolutionarily conserved, while the L195P mutation affects a well-conserved residue nine amino acids down-stream from the putative active site nucleophile. These mutations provide evidence that different mechanisms can result in galactosemia: destabilizing mutations in any given area of the protein and missense mutations in conserved domains of the enzyme resulting in low or no activity. These two mutant alleles represent the fifth and sixth galactosemia mutations and confirm the hypothesis that galactosemia results from a multiplicity of mutations at the molecular level.  相似文献   

13.
X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues, due to a defect in peroxisomal VLCFA β-oxidation. In the present study, we analyzed 10 male patients and 17 female carriers from 10 unrelated pedigrees with X-ALD from Argentina. By sequencing the ABCD1 we detected 9 different mutations, 8 of which were novel. These new mutations were verified by a combination of methods that included both functional (western blot and peroxisomal VLCFA β-oxidation) and bioinformatics analysis. The spectrum of novel mutations consists of 3 frameshift (p.Ser284fs*16, p.Glu380Argfs*21 and p.Thr254Argfs*82); a deletion (p.Ser572_Asp575del); a splicing mutation (c.1081+5G>C) and 3 missense mutations (p.Ala341Asp, p.His420Pro and p.Tyr547Cys). In one patient 2 changes were found: a known missense (p.His669Arg) and an unpublished amino acid substitution (p.Ala19Ser). In vitro studies suggest that p.Ala19Ser is a polymorphism. Moreover, we identified two novel intronic polymorphisms and two amino acid polymorphisms. In conclusion, this study extends the spectrum of mutation in X-ALD and facilitates the identification of heterozygous females.  相似文献   

14.
Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues   总被引:2,自引:0,他引:2  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by demyelination of white matter. The X-ALD gene product adrenoleukodystrophy protein (ALDP) is expressed broadly among various tissues. However, deficiency of functional ALDP exclusively impairs brain, adrenal gland, and testis. Thus, loss of ALDP function is assumed to involve inactivation of a putative mediating factor that functions in a tissue-specific manner. Here we cloned a mouse cDNA encoding a novel protein, Lipidosin, that possesses long-chain acyl-CoA synthetase (LCAS) activity. Lipidosin is expressed exclusively in mouse brain, adrenal gland, and testis, which are affected by X-ALD. LCAS activity of Lipidosin was diminished by mutation of conserved amino acids within the AMP-binding domain. Mutation of the Drosophila homologue of Lipidosin has been reported to cause neuronal degeneration. Thus, Lipidosin may mediate the link between ALDP dysfunction and the impairment of fatty acid metabolism in X-ALD.  相似文献   

15.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect.  相似文献   

16.
Autosomal dominant periodic fever syndromes are characterized by unexplained episodes of fever and severe localized inflammation. In seven affected families, we found six different missense mutations of the 55 kDa tumor necrosis factor receptor (TNFR1), five of which disrupt conserved extracellular disulfide bonds. Soluble plasma TNFR1 levels in patients were approximately half normal. Leukocytes bearing a C52F mutation showed increased membrane TNFR1 and reduced receptor cleavage following stimulation. We propose that the autoinflammatory phenotype results from impaired downregulation of membrane TNFR1 and diminished shedding of potentially antagonistic soluble receptor. TNFR1-associated periodic syndromes (TRAPS) establish an important class of mutations in TNF receptors. Detailed analysis of one such mutation suggests impaired cytokine receptor clearance as a novel mechanism of disease.  相似文献   

17.
We studied the involvement of the human T-cell leukemia virus type 1 (HTLV-1) Gag matrix protein in the cell-to-cell transmission of the virus using missense mutations of the basic amino acids. These basic amino acids are clustered at the N terminus of the protein in other retroviruses and are responsible for targeting the Gag proteins to the plasma membrane. In the HTLV–bovine leukemia virus genus of retroviruses, the basic amino acids are distributed throughout the matrix protein sequence. The HTLV-1 matrix protein contains 11 such residues. A wild-type phenotype was obtained only for mutant viruses with mutations at one of two positions in the matrix protein. The phenotypes of the other nine mutant viruses showed that the basic amino acids are involved at various steps of the replication cycle, including some after membrane targeting. Most of these nine mutations allowed normal synthesis, transport, and cleavage of the Gag precursor, but particle release was greatly affected for seven of them. In addition, four mutated proteins with correct particle release and envelope glycoprotein incorporation did not however permit cell-to-cell transmission of HTLV-1. Thus, particle release, although required, is not sufficient for the cell-to-cell transmission of HTLV-1, and the basic residues of the matrix protein are involved in steps that occur after viral particle release.  相似文献   

18.
We report studies of four patients with pyruvate dehydrogenase complex (PDH) deficiency caused by mutations in the E1α subunit. Two unrelated male patients presented with Leigh syndrome and a R263G missense mutation in exon 8. This mutation has previously been described in males with the same phenotype. The two other patients had different novel mutations: (1) an 8-bp deletion at the C-terminus (exon 11) was found in one allele of a young girl suffering from microcephaly and (2) a C88S missense mutation (exon 3) in a boy who only presented with motor neuropathy. These mutations were not found in the mothers of any of the four cases. Immunoblot analysis revealed decreased immunoreactivity for the E1α and E1β subunits in three out of the four patients. These findings confirm that: (1) PDH deficiencies are genetically heterogeneous, (2) the R263G mutation is more frequent in male cases than are other mutations and this amino acid is a hot spot for gene mutations, (3) the last eight amino acids may be important for the conformation of the tetrameric E1-PDH enzyme, and (4) the amino acids at positions 88, 263 and 382–387 are essential for the linking of the α subunit with the β subunit and for the activity of the holoenzyme. Received: 28 October 1996 / Revised: 13 January 1997  相似文献   

19.
Adrenomyeloneuropathy (AMN) represents a milder form of X-linked adrenoleukodystrophy (ALD), the most frequent peroxisomal disorder. The disease is characterised by an abnormal accumulation of saturated, very long chain, fatty acids, because of altered peroxisomal ?-oxidation that concomitantly leads to demyelination in the central and peripheral nervous systems. ALD shows a highly variable phenotypic expression and extensive mutation analysis in ALD patients has failed to establish a genotype-phenotype correlation, even in the presence of the same ALD-gene defect. Therefore, we have looked for a relationship between the molecular lesion and the age of onset in 19 patients with a well-classified clinical course of AMN. The nearly complete novel spectrum of ALD gene mutations identified has revealed no obvious correlation between the type of mutation and age of AMN onset in this small series. However, intrafamiliar concordance could be observed with respect to the occurrence of adrenocortical insufficiency. This supports the idea of one (or more) additional gene(s) contributing to the phenotypic expression of ALD. Electronic Publication  相似文献   

20.
X-linked liver glycogenosis (XLG) resulting from phosphorylase kinase (Phk) deficiency is one of the most common forms of glycogen storage disease. It is caused by mutations in the gene encoding the liver isoform of the Phk α subunit (PHKA2). In the present study, we address the issue of phenotypic and allelic heterogeneity in XLG. We have identified mutations in seven male patients. One of these patients represents the variant biochemical phenotype, XLG subtype 2 (XLG2), where Phk activity is low in liver but normal or even elevated in erythrocytes. He carries a K189E missense mutation, which adds to the emerging evidence that XLG2 is associated with missense mutations clustering at a few sites. Two patients display clinical phenotypes unusual for liver Phk deficiency, with dysfunction of the kidneys (proximal renal tubular acidosis) or of the nervous system (seizures, delayed cognitive and speech abilities, peripheral sensory neuropathy), respectively, in addition to liver glycogenosis. In the patient with kidney involvement, we have identified a missense mutation (P399S) and a trinucleotide deletion (2858del3) leading to the replacement of two amino acids by one new residue (N953/L954I), and a missense mutation has also been found in the patient with neurological symptoms (G1207W). These two cases demonstrate that PHKA2 mutations can also be associated with uncommon clinical phenotypes. Finally, in four typical XLG cases, we have identified three truncating mutations (70insT, R352X, 567del22) and an in-frame deletion of eight well-conserved amino acids (2452del24). Together, this study adds eight new mutations to the previously known complement of sixteen PHKA2 mutations. All known PHKA2 mutations but one are distinct, indicating pronounced allelic heterogeneity of X-linked liver glycogenosis with mutations in the PHKA2 gene. Received: 17 October 1997 / Accepted: 23 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号