首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hanada T  Ohsumi Y 《Autophagy》2005,1(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5.Atg16 complex that is requisite for autophagosome formation.  相似文献   

2.
The Atg12-Atg5 conjugate, which is formed by an ubiquitin-like conjugation system, is essential to autophagosome formation, a central event in autophagy. Despite its importance, the molecular mechanism of the Atg12-Atg5 conjugate formation has not been elucidated. Here, we report the solution and crystal structures of Atg10 and Atg5 homologs from Kluyveromyces marxianus (Km), a thermotolerant yeast. KmAtg10 comprises an E2-core fold with characteristic accessories, including two β strands, whereas KmAtg5 has two ubiquitin-like domains and a helical domain. The nuclear magnetic resonance experiments, mutational analyses, and crosslinking experiments showed that KmAtg10 directly recognizes KmAtg5, especially its C-terminal ubiquitin-like domain, by its characteristic two β strands. Kinetic analysis suggests that Tyr56 and Asn114 of?KmAtg10 may place the side chain of KmAtg5 Lys145 into the optimal orientation for its conjugation reaction with Atg12. These structural features enable Atg10 to mediate the formation of the Atg12-Atg5 conjugate without a specific E3 enzyme.  相似文献   

3.
Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 A resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.  相似文献   

4.
Structure of Atg5.Atg16, a complex essential for autophagy   总被引:2,自引:0,他引:2  
Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5.Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97A resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.  相似文献   

5.
Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 Å resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.  相似文献   

6.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

7.
Autophagy is a bulk degradation process in eukaryotic cells; autophagosomes enclose cytoplasmic components for degradation in the lysosome/vacuole. Autophagosome formation requires two ubiquitin-like conjugation systems, the Atg12 and Atg8 systems, which are tightly associated with expansion of autophagosomal membrane. Previous studies have suggested that there is a hierarchy between these systems; the Atg12 system is located upstream of the Atg8 system in the context of Atg protein organization. However, the concrete molecular relationship is unclear. Here, we show using an in vitro Atg8 conjugation system that the Atg12-Atg5 conjugate, but not unconjugated Atg12 or Atg5, strongly enhances the formation of the other conjugate, Atg8-PE. The Atg12-Atg5 conjugate promotes the transfer of Atg8 from Atg3 to the substrate, phosphatidylethanolamine (PE), by stimulating the activity of Atg3. We also show that the Atg12-Atg5 conjugate interacts with both Atg3 and PE-containing liposomes. These results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugation.  相似文献   

8.
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and together with Ygr223c form a novel family of phosphoinositide binding proteins that are associated with the vacuole and perivacuolar structures. Their localization requires the activity of Vps34, suggesting that phosphatidylinositol(3)phosphate may be essential for their function. The activity of Atg18 is vital for all forms of autophagy, whereas Atg21 is required for the Cvt pathway but not for nitrogen starvation-induced autophagy. The loss of Atg21 results in the absence of Atg8 from the pre-autophagosomal structure (PAS), which may be ascribed to a reduced rate of conjugation of Atg8 to phosphatidylethanolamine. A similar defect in localization of a second ubiquitin-like conjugate, Atg12-Atg5, suggests that Atg21 may be involved in the recruitment of membrane to the PAS.  相似文献   

9.
Chen D  Fan W  Lu Y  Ding X  Chen S  Zhong Q 《Molecular cell》2012,45(5):629-641
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.  相似文献   

10.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

11.
Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs) in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes.  相似文献   

12.
Atg7 is a noncanonical, homodimeric E1 enzyme that interacts with the noncanonical E2 enzyme, Atg3, to mediate conjugation of the ubiquitin-like protein (UBL) Atg8 during autophagy. Here we report that the unique N-terminal domain of Atg7 (Atg7(NTD)) recruits a unique "flexible region" from Atg3 (Atg3(FR)). The structure of an Atg7(NTD)-Atg3(FR) complex reveals hydrophobic residues from Atg3 engaging a conserved groove in Atg7, important for Atg8 conjugation. We also report the structure of the homodimeric Atg7 C-terminal domain, which is homologous to canonical E1s and bacterial antecedents. The structures, SAXS, and crosslinking data allow modeling of a full-length, dimeric (Atg7~Atg8-Atg3)(2) complex. The model and biochemical data provide a rationale for Atg7 dimerization: Atg8 is transferred in trans from the catalytic cysteine of one Atg7 protomer to Atg3 bound to the N-terminal domain of the opposite Atg7 protomer within the homodimer. The studies reveal a distinctive E1~UBL-E2 architecture for enzymes mediating autophagy.  相似文献   

13.
Nakatogawa H  Ishii J  Asai E  Ohsumi Y 《Autophagy》2012,8(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8-PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8-PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8-PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8-PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

14.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   

15.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

16.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.  相似文献   

17.
18.
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.  相似文献   

19.
Recent research on autophagy clearly demonstrates that the autophagosome-lysosome pathway plays essential roles in elimination of certain pathogens such as group A Streptococcus, Mycobacterium tuberculosis, Listeria monocytogenes, and herpesvirus. (1-4) We have recently found that a key regulator of the autophagic process, the Atg12-Atg5 conjugate, associates with the signaling molecules retinoic acid-inducible gene I (RIG-I) and interferon-beta promoter stimulator 1 (IPS-1), which are essential for recognition of RNA virus infection and which transmit signals to upregulate type I interferons (IFNs). Interestingly, the Atg12-Atg5 conjugate seemed to negatively regulate the type I IFN modulating pathway through direct interaction with caspase recruitment domains (CARDs) presented by RIG-1 and IPS-1.(5) Thus, in contrast to the bactericidal properties of autophagic processes, the autophagy regulator (the Atg12-Atg5 conjugate) appeared to promote RNA virus replication by inhibiting innate anti-virus immune responses. In this addendum, we discuss the non-canonical role of the Atg12-Atg5 conjugate as a suppressor of innate immune responses.  相似文献   

20.
The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA–adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown monoubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine (PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non–ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号