首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
目的:探讨第四脑室注射orexin-A(OXA)对大鼠饮食摄取条件性位置偏爱的影响。方法:将30只大鼠随机分成3组,即对照组,低剂量组和高剂量组,第四脑室分别注射生理盐水(NS)、orexin-A或orexin-A受体拮抗剂SB334867,观察大鼠按压杠杆获取蔗糖的次数和最高频率的变化。再选择30只大鼠,第四脑室注射orexin-A和SB334867,观察大鼠对高脂饮食(HF)食物的摄入量。另选取30只大鼠第四脑室注射orexin-A或SB334867,将大鼠置于条件位置偏爱箱来检测大鼠对HF条件性位置偏爱的变化。结果:与对照组相比,24小时禁食大鼠,第四脑室注射orexin-A,可显著增加大鼠按压杠杆获取蔗糖的次数和最高频率(P0.05)。而SB334867可显著降低大鼠按压杠杆获取蔗糖次数以及最大频率(P0.05)。第四脑室注射orexin-A,可使大鼠HF摄入量显著增加(P0.05),第四脑室注射SB334867,不影响大鼠HF摄入量,但会抑制普通饮食的摄入(P0.05)。第四脑室注射orexin-A能增强对HF饮食位置偏爱性的表达,注射SB334867后会显著抑制大鼠对HF饮食位置偏爱性的表达(P0.05)。结论:第四脑室注射Orexin-A可影响大鼠摄食行为,增加高脂饮食的摄入量,增强对HF饮食位置偏爱性的表达。  相似文献   

2.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

3.
Leptin receptor (LepRb) signaling in the hindbrain is required for energy balance control. Yet the specific hindbrain neurons and the behavioral processes mediating energy balance control by hindbrain leptin signaling are unknown. Studies here employ genetic [adeno-associated virally mediated RNA interference (AAV-RNAi)] and pharmacological methodologies to specify the neurons and the mechanisms through which hindbrain LepRb signaling contributes to the control of food intake. Results show that AAV-RNAi-mediated LepRb knockdown targeting a region encompassing the mNTS and area postrema (AP) (mNTS/AP LepRbKD) increases overall cumulative food intake by increasing the size of spontaneous meals. Other results show that pharmacological hindbrain leptin delivery and RNAi-mediated mNTS/AP LepRb knockdown increased and decreased the intake-suppressive effects of intraduodenal nutrient infusion, respectively. These meal size and intestinally derived signal amplification effects are likely mediated by LepRb signaling in the mNTS and not the AP, since 4th icv and mNTS parenchymal leptin (0.5 μg) administration reduced food intake, whereas this dose did not influence food intake when injected into the AP. Overall, these findings deepen the understanding of the distributed neuronal systems and behavioral mechanisms that mediate the effects of leptin receptor signaling on the control of food intake.  相似文献   

4.
A variety of evidence implicates the orexins, especially orexin-A, in the regulation of food intake, but it has not been established whether this effect is mediated by the orexin-1 or orexin-2 receptor. In the present study, a selective orexin-1 receptor antagonist, 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea hydrochloride (SB-334867-A), was administered intraperitoneally to rats under various conditions, and food consumption was subsequently measured over 24 h. In male rats, a single dose of SB-334867-A (30 mg/kg, i.p.) given during the light phase reduced both orexin-A-induced food intake (7 nmol, i.c.v.) and feeding stimulated by an overnight fast for 4 h. When given at the start of the dark phase, food consumption was reduced in both male and female rats over 24 h. Daily injections at the start of the dark phase for 3 days reduced natural feeding in male rats over 24 h on days one and three. These findings demonstrate direct inhibition of orexin-A induced food intake with a selective orexin-1 receptor antagonist. Furthermore, the suppression of nocturnal feeding and food intake stimulated by an overnight fast supports other evidence that orexin-A is involved in the regulation of natural feeding and suggests that orexin-1 receptor antagonists could be useful in the treatment of obesity.  相似文献   

5.
目的:探讨ARC orexin-A对胃传入信息以及胃运动的调控及机制。方法:采用细胞外放电记录方法,鉴定ARC orexin胃牵张敏感神经元(Gastric distention sensitive neurons,GD),并探讨ARC内orexin-A对GD神经元放电活动的影响及机制;采用ARC微量注射orexin-A和及其受体阻断剂SB334867,观察大鼠胃收缩幅度和频率的改变。结果:大鼠ARC共记录到149个GD神经元,其中GD-E神经元91个,GD-I神经元58个。ARC微量注射orexin-A,62个(62/91,68.1%)GD-E神经元兴奋性显著增加,其放电频率由4.27±0.58 Hz增加到8.46±0.95 Hz(P0.01);39个(39/58,67.2%)GD-I神经元兴奋性也显著增强,其放电频率由4.02±0.53 Hz增加到5.43±0.57 Hz(P0.05)。然而,ARC给予大鼠orexin-A受体拮抗剂SB334867,再给予orexin-A,orexin-A兴奋效应完全被阻断(P0.05)。胃运动实验结果显示:在ARC注射不同浓度orexin-A,大约5 min后,大鼠胃收缩幅度和频率呈剂量依赖性增加(P0.05~0.01)。ARC注射SB334867,可完全消除orexin-A对大鼠胃运动的兴奋效应(P0.05)。结论:ARC orexin-A对大鼠GD神经元和胃运动有调控作用,该作用可能通过调控Orexin A受体活动实现的。  相似文献   

6.
Amylin receptor blockade stimulates food intake in rats   总被引:1,自引:0,他引:1  
Amylin is postulated to act as a hormonal signal from the pancreas to the brain to inhibit food intake and regulate energy reserves. Amylin potently reduces food intake, body weight, and adiposity when administered systemically or into the brain. Whether selective blockade of endogenous amylin action increases food intake and adiposity remains to be clearly established. In the present study, the amylin receptor antagonist acetyl-[Asn(30), Tyr(32)] sCT-(8-32) (AC187) was used to assess whether action of endogenous amylin is essential for normal satiation to occur. Non-food-deprived rats received a 3- to 4-h intravenous infusion of AC187 (60-2,000 pmol.kg(-1).min(-1)), either alone or coadministered with a 3-h intravenous infusion of amylin (2.5 or 5 pmol.kg(-1).min(-1)) or a 2-h intragastric infusion of an elemental liquid diet (4 kcal/h). Infusions began just before dark onset. Food intake and meal patterns during the first 4 h of the dark period were determined from continuous computer recordings of changes in food bowl weight. Amylin inhibited food intake by approximately 50%, and AC187 attenuated this response by approximately 50%. AC187 dose-dependently stimulated food intake (maximal increases from 76 to 171%), whether administered alone or with an intragastric infusion of liquid diet. Amylin reduced mean meal size and meal frequency, AC187 attenuated these responses, and AC187 administration alone increased mean meal size and meal frequency. These results support the hypothesis that endogenous amylin plays an essential role in reducing meal size and increasing the postmeal interval of satiety.  相似文献   

7.
目的:探讨下丘脑室旁核orexin-A对大鼠摄食和胃动力影响及调控机制。方法:采用免疫组化观察下丘脑室旁核(paraventricular nucleus,PVN)orexin受体表达情况;PVN注射orexin-A观察大鼠摄食、胃运动、胃酸分泌和胃排空的改变。结果:免疫组化实验显示大鼠PVN中存在orexin受体免疫阳性细胞。PVN注射orexin-A后,大鼠前三小时摄食增加,6 h和24 h摄食无显著改变。PVN微量注射orexin-A后,大鼠胃运动幅度和频率增加、胃排空增快并且胃酸分泌增多。[D-Lys-3]-GHRP-6可部分阻断orexin-A对摄食、胃运动、胃排空和胃酸分泌的促进作用,SB334867可完全阻断orexin-A对胃运动、胃排空和胃酸分泌的促进作用。结论:下丘脑室旁核orexin-A可能通过生长激素促泌素GHSR受体信号通路调控大鼠摄食及胃功能。  相似文献   

8.
The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut-brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as behavioural effects.  相似文献   

9.
目的:研究orexin在隔核对大鼠胃传入信息的调控作用。方法:选取健康成年雄性Wistar大鼠138只(体质量250-300 g),记录神经元放电活动,鉴定隔核胃牵张(GD)敏感性神经元;隔核微量注射orexin-A或orexin-A受体拮抗剂SB334867,观察隔核GD敏感性神经元放电活动变化;隔核微量注射不同浓度的orexin-A,观察大鼠胃运动的变化。结果:隔核微量注射orexin-A的大鼠胃运动幅度和频率显著增加,并呈剂量依赖关系(P0.05-0.01),微量注射SB-334867可完全阻断orexin-A对胃运动的影响。隔核微量注射orexin-A后,有36个GD-E神经元兴奋(P0.01),16个GD-I神经元抑制。Orexin-A受体拮抗剂SB334867可完全阻断orexin-A对GD敏感神经元的作用。结论:隔核注射orexin能促进大鼠胃运动,并影响胃牵张敏感神经元的放电活动。  相似文献   

10.
White CL  Ishii Y  Mendoza T  Upton N  Stasi LP  Bray GA  York DA 《Peptides》2005,26(11):2331-2338
An orexin-1 receptor antagonist decreases food intake whereas orexin-A selectively induces hyperphagia to a high-fat diet. In the present study, we evaluated the effect of an orexin antagonist in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated acutely with an orexin-1 receptor antagonist (SB-334867), after adaptation to either a high-fat (56% fat energy) diet or a low-fat (10% fat energy) diet that were equicaloric for protein (24% energy). Ad libitum fed rats were injected intraperitoneally with SB-334867 at doses of 3, 10 or 30 mg/kg, or vehicle at the beginning of the dark cycle, and food intake and body weight were measured. Hypothalamic prepro-orexin and orexin-1 receptor mRNA expression were analyzed in OM and S5B rats fed at a high-fat or low-fat diet for two weeks. SB-334867 significantly decreased food intake in both strains of rats eating the high-fat diet but only in the OM rats eating the low fat diet. The effect was greatest at 12 and 24 h. Body weight was also reduced in OM rats 1d after injection of SB-334867 but not in the S5B rats. Prepro-orexin and orexin-1 receptor expression levels did not differ between strains or diets. These experiments demonstrate that an orexin antagonist (SB-334867) reduces food intake and has a greater effect in a rat strain that is susceptible to dietary-induced obesity, than in a resistant strain.  相似文献   

11.
Amylin is a peptide hormone that is cosecreted with insulin from the pancreas during and after food intake. Peripherally injected amylin potently inhibits feeding by acting on the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. We recently demonstrated that AP neurons are excited by a near physiological concentration of amylin. However, the subsequent neuronal mechanisms and the relevance of endogenously released amylin for the regulation of food intake are poorly understood. Therefore, we investigated 1) amylin's contribution to feeding-induced c-Fos expression in the rat AP and its ascending projection sites, and 2) amylin's ability to reverse fasting-induced c-Fos expression in the lateral hypothalamic area (LHA). Similar to amylin (20 microg/kg sc), refeeding of 24-h food-deprived rats induced c-Fos expression in the AP, the nucleus of the solitary tract, the lateral parabrachial nucleus, and the central nucleus of the amygdala. In AP-lesioned rats, the amylin-induced c-Fos expression in each of these sites was blunted, indicating an AP-mediated activation of these structures. Pretreatment with the amylin antagonist AC-187 (1 mg/kg sc) inhibited feeding-induced c-Fos expression in the AP. Food deprivation activated LHA neurons, a response known to be associated with hunger. This effect was reversed within 2 h after refeeding and also in nonrefed animals that received amylin. In summary, our data provide the first evidence that feeding-induced amylin release activates AP neurons projecting to subsequent relay stations known to transmit meal-related signals to the forebrain. Activation of this pathway seems to coincide with an inhibition of LHA neurons.  相似文献   

12.
目的:探讨蓝斑区(LC)去甲肾上腺素能神经元在orexin促麻醉觉醒中作用。方法:应用异氟烷对成年SD大鼠进行麻醉,15分钟后,将SD大鼠随机分为6组,分别注射orexin-A/B(100pmol/0.3μL)及其溶剂saline(0.3μL);orexin I型受体拮抗剂SB334867/II型受体拮抗剂TCS-OX2-29(20μg/0.3μL及其溶剂DMSO(0.3μL),通过观察大鼠翻正反射的消失和恢复时间,研究蓝斑区微注射orexin及其拮抗剂对异氟烷麻醉的诱导和觉醒的影响。结果:蓝斑区(LC)微注射四种试剂或其溶剂均对SD大鼠异氟烷麻醉的诱导时间无明显影响;蓝斑区(LC)微注射orexin-A能缩短SD大鼠异氟烷麻醉觉醒时间(P〈0.001),而微注射orexinI型拮抗剂SB334867能延长觉醒时间(P〈0.001);orexin-B、orexin II型受体拮抗剂TCS-OX2-29对大鼠异氟烷麻醉的觉醒无明显影响。结论:蓝斑区(LC)的去甲肾上腺素能神经元介导了orexin的促麻醉觉醒作用。  相似文献   

13.
The present study explored the role of endogenous alpha-MSH in the alteration of meal patterns induced by nicotine (NIC) withdrawal. Male Sprague Dawley rats bearing third ventricle cannulas were placed in computerized food intake monitors. On days 1-21, the rats were given 4 mg/kg/day of NIC or saline (SAL) in four equal i.p. doses during the dark period. NIC suppressed (P < 0.05) food intake only during the first week. The normalization of food intake occurred when the reduced meal size of the NIC injected rats was countered by an increase in meal number. Despite the normalization of 24-h food intake, body weight in NIC rats was decreased (P < 0.05) for 21 days. On day 22, the rats were divided into 4 groups (n's = 7-8 each) and injected into the third ventricle with various doses of the alpha-MSH agonist MTII or artificial cerebrospinal fluid (aCSF): SAL + aCSF, SAL + MTII, NIC + aCSF, NIC + MTII. Infusion of MTII (30 ng/rat) suppressed (P < 0.01) dark phase food intake in both groups, but the NIC + MTII group ate (P < 0.05) more than the SAL + MTII group. Meal number during the dark phase was suppressed by MTII, but the NIC + MTII group took significantly more meals that the SAL + MTII group. Infusion of MTII suppressed meal size in SAL and NIC treated rats, but this effect was attenuated in NIC treated rats. All meal parameters normalized by the day after i.c.v. infusion. These data indicate that NIC treatment differentially affects the neural controls of meal number and meal size and attenuates the suppression by MTII of meal number and meal size.  相似文献   

14.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

15.
目的:探讨orexin-A(OXA)受体介导的生长抑素激动剂ODT8-SST 对大鼠摄食和饮水的调节作用相关作用机制。方法:在光 照周期内,大鼠40 只随机分8 组,侧脑室(icv)分别注射不同剂量ODT8-SST 或生理盐水(NS);大鼠56 只随机分8 组分别侧脑 室注射不同剂量OXA 受体(OX1R)拮抗剂SB-334867 或NS;2小时后测量大鼠摄食量和饮水量。结果:与NS组相比,实验组大 鼠侧脑室注射ODT8-SST(1 ug/rat),2 小时后摄食量和饮水量均显著增加(P<0.05)。大鼠侧脑室注射SB-334867(16 ug/rat)完全 抑制了由侧脑室注射ODT8-SST 后引起的摄食量和饮水量的增加;与此相反,大鼠给予SST2 拮抗剂S-406-028 预处理之后,可阻 止侧脑室注射ODT8-SST 引发的促进食欲作用,但不会影响侧脑室注射OXA(10.7 ug/rat)诱导的摄食量和饮水量的增加。结论: 侧脑室注射ODT8-SST 可促进摄食和饮水,该过程可能由OX1R所介导;orexin-A 促进摄食作用不依赖大脑SST2 通路的激活。  相似文献   

16.
Previous studies have shown nicotine (NIC) administration leads to decreased food intake, while other investigations have reported that NIC stimulates c-Fos expression in the brainstem. Whether there is a causal relationship between NIC effects on ingestion and its effect on brainstem neurons is uncertain, however we hypothesized that blocking NIC action in the brainstem would prevent, to some extent, the hypophagic effects of NIC. In the present study, cannulas were placed in the fourth ventricle of rats. A dose of NIC or saline was injected i.p. in four equal injections during the dark phase for four days. At the start of the second day of injections the NIC receptor antagonist mecamylamine (MEC) or artificial cerebrospinal fluid (a-CSF) was infused intracerebroventricularly (i.c.v.). Thus, four experimental groups were examined: a-CSF + SAL; a-CSF + NIC; MEC + SAL; MEC + NIC. Meal patterns were recorded using a computerized system and water intake and body weight were measured daily. Peripheral NIC injections suppressed food intake by decreasing meal size, whereas infusion of the NIC receptor antagonist MEC (4 microg) into the fourth ventricle blocked the NIC suppression of food intake. Moreover, the MEC effect was due primarily to an increase in dark phase meal size, which suggests neurons localized to the brainstem transmit NIC signals that regulate feeding behavior by affecting meal size.  相似文献   

17.
Food intake is stimulated following administration of orexin-A into the perifornical region of the lateral hypothalamus (LH/PFA). Orexin neurons originating in the LH/PFA interact with a number of hypothalamic systems known to influence food intake, including glutamatergic neurons. Glutamatergic systems in the LH/PFA were demonstrated to initiate feeding through N-methyl-d-aspartic acid (NMDA) receptors. Male Sprague-Dawley rats fitted with brain guide cannulas to the LH/PFA were used in two experiments. In the first experiment, a combination microdialysis/microinjection probe was used to deliver artificial cerebrospinal fluid (aCSF) or 500 pmol of orexin-A into the LH/PFA. Orexin-A increased interstitial glutamate to 143 +/- 12% of baseline (P < 0.05), which remained elevated over the 120-min collection period. In the second experiment, the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5; 10 nmol) was administered before orexin-A. The orexin-induced increase in food intake (from 1.1 +/- 0.4 to 3.2 +/- 0.5 g, P < 0.05) during the first hour was absent in rats receiving d-AP5 + orexin-A (1.2 +/- 0.5 g). There was no effect of d-AP5 alone on food intake. These data support glutamatergic systems in the LH/PFA mediating the feeding response to orexin-A through NMDA receptors.  相似文献   

18.
Sun GR  Tian ZB  Cao YX  Higuchi T 《生理学报》2004,56(6):685-690
为观察下丘脑胖素 A在哺乳期摄食增加和能量代谢中的作用,本研究采用脑连续切片之免疫组织化学和图像定量分析技术,对分娩后第 12 天非哺乳、持续哺乳、持续哺乳后禁哺乳过夜和持续哺乳 - 禁哺乳后再急性哺乳大鼠下丘脑胖素A免疫反应神经元的免疫反应性进行了观察和半定量分析。结果表明,分娩后持续哺乳 11 d, 大鼠的日摄食量较同期分娩的非哺乳大鼠明显增加(180%),一夜禁哺乳则明显降低哺乳大鼠的日摄食量(45%); 哺乳12 d, 大鼠下丘脑胖素 A免疫反应神经元的数目和平均染色强度较非哺乳大鼠明显增加(P<0.001,P<0.05); 禁哺乳过夜(15 h)明显降低哺乳大鼠胖素A免疫反应神经元的数目和平均染色强度(P<0.001,P<0.05),与非哺乳大鼠比较无明显差异;禁哺乳过夜后再急性哺乳2 h 明显增加禁哺乳大鼠胖素 A 免疫反应神经元的数目和平均染色强度(P<0.001,P<0.05),急性哺乳 5 h 后,虽亦明显增加禁哺乳大鼠胖素 A免疫反应性(P<0.05),但与急性哺乳 2 h 比较作用减弱。上述结果表明,持续哺乳和禁乳后再哺乳均导致下丘脑胖素A明显增加,提示哺乳期胖素A可能表达上调并可能与哺乳期摄食增加有关, 且吸乳动作与下丘脑胖素A样神经元之间可能存在某种神经或体液性联系途径。  相似文献   

19.
Glucagon-like peptide-1 receptor (GLP-1R) activation within the nucleus tractus solitarius (NTS) suppresses food intake and body weight (BW), but the intracellular signals mediating these effects are unknown. Here, hindbrain (fourth i.c.v.) GLP-1R activation by Exendin-4 (Ex-4) increased PKA and MAPK activity and decreased phosphorylation of AMPK in NTS. PKA and MAPK signaling contribute to food intake and BW suppression by Ex-4, as inhibitors RpcAMP and U0126 (fourth i.c.v.), respectively, attenuated Ex-4's effects. Hindbrain GLP-1R activation inhibited feeding by reducing meal number, not meal size. This effect was attenuated with stimulation of AMPK activity by AICAR (fourth i.c.v.). The PKA, MAPK, and AMPK signaling responses by Ex-4 were present in immortalized GLP-1R-expressing neurons (GT1-7). In conclusion, hindbrain GLP-1R activation suppresses food intake and BW through coordinated PKA-mediated suppression of AMPK and activation of MAPK. Pharmacotherapies targeting these signaling pathways, which mediate intake-suppressive effects of CNS GLP-1R activation, may prove efficacious in treating obesity.  相似文献   

20.
Amylin and insulin interact to reduce food intake in rats.   总被引:1,自引:0,他引:1  
We investigated the hypothesis that amylin and insulin, hormones co-secreted by pancreatic B-cells in response to a nutrient stimulus, interact to reduce food intake. A paradigm was employed that assessed food intake in adult male rats after bolus intravenous (i.v.) infusion at dark onset. In one experiment, rats received saline or amylin (0.1, 0.5 or 1.0 nmol). All amylin doses significantly suppressed 1 h intake, and although significant decreases in cumulative intake persisted for 2 h after 0.5 and 1.0 nmol, a significant increase of food intake actually occurred relative to saline during the interval from 1 to 2 h post-infusion. In another experiment, rats received saline, 0.25 nmol amylin, 10 mU insulin, or the combination of amylin plus insulin. Neither amylin nor insulin alone significantly changed cumulative food intake at any time point as compared to saline. However, the combination significantly reduced intake relative not only to saline but also to amylin and insulin alone after 1, 2, and 4 hours. These data are consistent with the hypothesis that endogenous amylin and insulin interact to reduce food intake and, ultimately, body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号