首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Mechanical cues are known to regulate tissue differentiation during skeletal healing. Quantitative characterization of this mechano-regulatory effect has great therapeutic potential. This study tested an existing theory that shear strain and interstitial fluid flow govern skeletal tissue differentiation by applying this theory to a scenario in which a bending motion applied to a healing transverse osteotomy results in cartilage, rather than bone, formation. A 3-D finite element mesh was created from micro-computed tomography images of a bending-stimulated callus and was used to estimate the mechanical conditions present in the callus during the mechanical stimulation. Predictions regarding the patterns of tissues—cartilage, fibrous tissue, and bone—that formed were made based on the distributions of fluid velocity and octahedral shear strain. These predictions were compared to histological sections obtained from a previous study. The mechano-regulation theory correctly predicted formation of large volumes of cartilage within the osteotomy gap and many, though not all patterns of tissue formation observed throughout the callus. The results support the concept that interstitial fluid velocity and tissue shear strain are key mec- hanical stimuli for the differentiation of skeletal tissues.  相似文献   

2.
Bone has a capability to repair itself when it is fractured. Repair involves the generation of intermediate tissues, such as fibrous connective tissue, cartilage and woven bone, before final bone healing can occur. The intermediate tissues serve to stabilise the mechanical environment and provide a scaffold for differentiation of new tissues. The repair process is fundamentally affected by mechanical loading and by the geometric configuration of the fracture fragments. Biomechanical analyses of fracture healing have previously computed the stress distribution within the callus and identified the components of the stress tensor favouring or inhibiting differentiation of particular tissue phenotypes. In this paper, a biphasic poroelastic finite element model of a fracture callus is used to simulate the time-course of tissue differentiation during fracture healing. The simulation begins with granulation tissue (post-inflammation phase) and finishes with bone resorption. The biomechanical regulatory model assumes that tissue differentiation is controlled by a combination of shear strain and fluid flow acting within the tissue. High shear strain and fluid flows are assumed to deform the precursor cells stimulating formation of fibrous connective tissue, lower levels stimulate formation of cartilage, and lower again allows ossification. This mechano-regulatory scheme was tested by simulating healing in fractures with different gap sizes and loading magnitudes. The appearance and disappearance of the various tissues found in a callus was similar to histological observation. The effect of gap size and loading magnitude on the rate of reduction of the interfragmentary strain was sufficiently close to confirm the hypothesis that tissue differentiation phenomena could be governed by the proposed mechano-regulation model.  相似文献   

3.
A new quantitative tissue differentiation theory which relates the local tissue formation in a fracture gap to the local stress and strain is presented. Our hypothesis proposes that the amounts of strain and hydrostatic pressure along existing calcified surfaces in the fracture callus determine the differentiation of the callus tissue. The study compares the local strains and stresses in the callus as calculated from a finite element model with histological findings from an animal fracture model. The hypothesis predicts intramembranous bone formation for strains smaller approximately +/- 5% and hydrostatic pressures smaller than +/- 0.15 MPa. Endochondral ossification is associated with compressive pressures larger than about -0.15 MPa and strains smaller than +/- 15%. All other conditions seemed to lead to connective tissue or fibrous cartilage. The hypothesis enables a better understanding of the complex tissue differentiation seen in histological images and the mechanical conditions for healing delayed healing or nonunions.  相似文献   

4.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

5.
It is proposed that the external asymmetric formation of callus tissues that forms naturally about an oblique bone fracture can be predicted computationally. We present an analysis of callus formation for two cases of bone fracture healing: idealised and subject-specific oblique bone fractures. Plane strain finite element (FE) models of the oblique fractures were generated to calculate the compressive strain field experienced by the immature callus tissues due to interfragmentary motion. The external formations of the calluses were phenomenologically simulated using an optimisation style algorithm that iteratively removes tissue that experiences low strains from a large domain. The resultant simulated spatial formation of the healing tissues for the two bone fracture cases showed that the calluses tended to form at an angle equivalent to the angle of the oblique fracture line. The computational results qualitatively correlated with the callus formations found in vivo. Consequently, the proposed methods show potential as a means of predicting callus formation in pre-clinical testing.  相似文献   

6.
2D, coronal plane, finite elements models (FEMs) were developed from orthogonal radiographs of a diaphyseal tibial fracture and its reparative tissue at four different time points during healing. Each callus was separated into regions of common tissue histology by computerised radiographic analysis. Starting point values of tissue material properties from the literature were refined by the model to simulate exactly the mechanical behaviour of the subject's callus and bone during loading. This was achieved by matching measured inter-fragmentary displacements with calculated inter-fragmentary forces. Stress and strain distributions in the callus and bone were calculated from peak inter-fragmentary displacements measured during natural walking activity, and were correlated with the subsequently observed pattern of tissue differentiation and maturation of the callus. The growth and stiffening of the external callus progressively reduced the inter-fragmentary gap strain. Partial maturation of the gap tissue was apparent only one week before fixator removal. Principal stresses in the callus were compared with 'yield stresses' in corresponding tissue from the literature. This indicated the presence of stress concentrations medial and lateral to the fracture gap, which probably caused tissue damage during normal activity levels. Tissue damage may also have precipitated partial structural failure of the callus, both of which were believed to have delayed healing during the middle third of the fixation period. Had the fixation device provided greater inter-fragmentary support during early healing, this may have prevented callus failure and the consequent delay in healing. A further benefit of this would have been the reduction of the initially high intra-gap tissue strains to a magnitude more conducive to earlier maturation of the bridging tissue that united the bone.  相似文献   

7.
Molecular signaling in bone fracture healing and distraction osteogenesis   总被引:11,自引:0,他引:11  
The process of fracture healing has been described in detail in many histological studies. Recent work has focused on the mechanisms by which growth and differentiation factors regulate the fracture healing process. Rapid progress in skeletal cellular and molecular biology has led to the identification of many signaling molecules associated with the formation of skeletal tissues, including members of the transforming growth factor-beta (TGF-beta) superfamily and the insulin-like growth factor (IGF) family. Increasing evidence indicates that they are critical regulators of cellular proliferation, differentiation, extracellular matrix biosynthesis and mineralization. Limb lengthening procedure (distraction osteogenesis) is a relevant model to investigate the in vivo correlation between mechanical stimulation and biological responses as the callus is stretched by a proper rate and rhythm of mechanical strain. This model also provides additional insights into the molecular and cellular events during bone fracture repair. TGF-beta 1 was significantly increased in both the distracted callus and the fracture callus. The increased level of TGF-beta 1, together with a low concentration of calcium and an enhanced level of collagen synthesis, was maintained in the distracted callus as long as mechanical strain was applied. Less mineralization is also associated with a low level of osteocalcin production. These observations provide further insights into the molecular basis for the cellular events during distraction osteogenesis.  相似文献   

8.
During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification.  相似文献   

9.
Most long-bone fractures heal through indirect or secondary fracture healing, a complex process in which endochondral ossification is an essential part and bone is regenerated by tissue differentiation. This process is sensitive to the mechanical environment, and several authors have proposed mechano-regulation algorithms to describe it using strain, pore pressure and/or interstitial fluid velocity as biofeedback variables. The aim of this study was to compare various mechano-regulation algorithms' abilities to describe normal fracture healing in one computational model. Additionally, we hypothesized that tissue differentiation during normal fracture healing could be equally well regulated by the individual mechanical stimuli, e.g. deviatoric strain, pore pressure or fluid velocity. A biphasic finite element model of an ovine tibia with a 3mm fracture gap and callus was used to simulate the course of tissue differentiation during normal fracture healing. The load applied was regulated in a biofeedback loop, where the load magnitude was determined by the interfragmentary movement in the fracture gap. All the previously published mechano-regulation algorithms studied, simulated the course of normal fracture healing correctly. They predicted (1) intramembranous bone formation along the periosteum and callus tip, (2) endochondral ossification within the external callus and cortical gap, and (3) creeping substitution of bone towards the gap from the initial lateral osseous bridge. Some differences between the effects of the algorithms were seen, but they were not significant. None of the volumetric components, i.e. pore pressure or fluid velocity, alone were able to correctly predict spatial or temporal tissue distribution during fracture healing. However, simulation as a function of only deviatoric strain accurately predicted the course of normal fracture healing. This suggests that the deviatoric component may be the most significant mechanical parameter to guide tissue differentiation during indirect fracture healing.  相似文献   

10.
The formation of a fracture callus in vivo tends to form in a structurally efficient manner distributing tissues where mechanical stimulus persists. Therefore, it is proposed that the formation of a fracture callus can be modelled in silico by way of an optimisation algorithm. This was tested by generating a finite element model of a transversal bone fracture embedded in a large tissue domain which was subjected to axial, bending and torsional loads. It was found that the relative fragment motion induced a compressive strain field in the early callus tissue which could be utilised to simulate the formation of external callus structures through an iterative optimisation process of tissue maintenance and removal. The phenomenological results showed a high level of congruence with in vivo healing patterns found in the literature. Consequently, the proposed strategy shows potential as a means of predicting spatial bone healing phenomena for pre-clinical testing.  相似文献   

11.
The formation of a fracture callus in vivo tends to form in a structurally efficient manner distributing tissues where mechanical stimulus persists. Therefore, it is proposed that the formation of a fracture callus can be modelled in silico by way of an optimisation algorithm. This was tested by generating a finite element model of a transversal bone fracture embedded in a large tissue domain which was subjected to axial, bending and torsional loads. It was found that the relative fragment motion induced a compressive strain field in the early callus tissue which could be utilised to simulate the formation of external callus structures through an iterative optimisation process of tissue maintenance and removal. The phenomenological results showed a high level of congruence with in vivo healing patterns found in the literature. Consequently, the proposed strategy shows potential as a means of predicting spatial bone healing phenomena for pre-clinical testing.  相似文献   

12.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

13.
Altered fracture repair in the absence of MMP9   总被引:13,自引:0,他引:13  
The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has been compared with fetal skeletal development, the extent to which the reparative process actually recapitulates the fetal program remains uncertain. Here, we provide the first genetic evidence that matrix metalloproteinase 9 (MMP9) regulates crucial events during adult fracture repair. We demonstrate that MMP9 mediates vascular invasion of the hypertrophic cartilage callus, and that Mmp9(-/-) mice have non-unions and delayed unions of their fractures caused by persistent cartilage at the injury site. This MMP9- dependent delay in skeletal healing is not due to a lack of vascular endothelial growth factor (VEGF) or VEGF receptor expression, but may instead be due to the lack of VEGF bioavailability in the mutant because recombinant VEGF can rescue Mmp9(-/-) non-unions. We also found that Mmp9(-/-) mice generate a large cartilage callus even when fractured bones are stabilized, which implicates MMP9 in the regulation of chondrogenic and osteogenic cell differentiation during early stages of repair. In conclusion, the resemblance between Mmp9(-/-) fetal skeletal defects and those that emerge during Mmp9(-/-) adult repair offer the strongest evidence to date that similar mechanisms are employed to achieve bone formation, regardless of age.  相似文献   

14.
Fracture healing involves the differentiation and proliferation of cells in the callus and the synthesis and degradation of connective, cartilage and bone tissue. These processes are initiated and tightly regulated by growth factors and by the mechanical environment in the callus. In this work we incorporated the effects of mechanical stimulation on cell differentiation and ossification into a previously developed temporal-spatial model of growth factor mediated fracture healing. In particular, the stimulatory and inhibitory effects of dilatational and deviatoric strains were modeled. This predictive model was then calibrated and validated using well-defined in vivo experiments from the literature. As in the experiments, the results of the model demonstrated the beneficial and adverse effects of moderate and excessive loading, respectively, as well as the negative effects of delaying mechanical stimulation of rigidly fixed calluses. In addition, the model examined loading conditions and time points beyond those used in the experiments, providing a more complete and mechanistic characterization of the effects of loading in the biological tissue response associated with fracture healing.  相似文献   

15.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

16.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

17.
Phenomenological computational models of tissue regeneration and bone healing have been only partially successful in predicting experimental observations. This may be a result of simplistic modeling of cellular activity. Furthermore, phenomenological models are limited when considering the effects of combined physical and biological interventions. In this study, a new model of cell and tissue differentiation, using a more mechanistic approach, is presented and applied to fracture repair. The model directly couples cellular mechanisms to mechanical stimulation during bone healing and is based on the belief that the cells act as transducers during tissue regeneration. In the model, the cells within the matrix proliferate, differentiate, migrate, and produce extracellular matrix, all at cell-phenotype specific rates, based on the mechanical stimulation they experience. The model is assembled from coupled partial differentiation equations, which are solved using a newly developed finite element formulation. The evolution of four cell types, i.e. mesenchymal stem cells, fibroblasts, chondrocytes and osteoblasts, and the production of extracellular matrices of fibrous tissue, cartilage and bone are calculated. The material properties of the tissues are iteratively updated based on actual amounts of extracellular matrix in material elements at progressive time points. A two-dimensional finite element model of a long bone osteotomy was used to evaluate the model's potential. The additional value of the presented model and the importance of including cell-phenotype specific activities when modeling tissue differentiation and bone healing, were demonstrated by comparing the predictions with phenomenological models. The model's capacity was established by showing that it can correctly predict several aspects of bone healing, including cell and tissue distributions during normal fracture healing. Furthermore, it was able to predict experimentally established alterations due to excessive mechanical stimulation, periosteal stripping and impaired effects of cartilage remodeling.  相似文献   

18.
Computational models are employed as tools to investigate possible mechano-regulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet established. The aim was to clarify the importance of the assumed tissue material properties in a computational model of tissue differentiation during bone healing. An established mechano-biological model was employed together with a statistical approach. The model included an adaptive 2D finite element model of a fractured long bone. Four outcome criteria were quantified: (1) ability to predict sequential healing events, (2) amount of bone formation at specific time points, (3) total time until healing, and (4) mechanical stability at specific time points. Statistical analysis based on fractional factorial designs first involved a screening experiment to identify the most significant tissue material properties. These seven properties were studied further with response surface methodology in a three-level Box–Behnken design. Generally, the sequential events were not significantly influenced by any properties, whereas rate-dependent outcome criteria and mechanical stability were significantly influenced by Young's modulus and permeability. Poisson's ratio and porosity had minor effects. The amount of bone formation at early, mid and late phases of healing, the time until complete healing and the mechanical stability were all mostly dependent on three material properties; permeability of granulation tissue, Young's modulus of cartilage and permeability of immature bone. The consistency between effects of the most influential parameters was high. To increase accuracy and predictive capacity of computational models of bone healing, the most influential tissue mechanical properties should be accurately quantified.  相似文献   

19.
Proteoglycans (PG) and their associated glycosaminoglycan (GAG) side chains are known to play a key role in the bearing of compressive loads in cartilage and other skeletal connective tissues. In tendons and connective tissues that are primarily loaded in tension, the influence of proteoglycans on mechanical behavior is debated due to conflicting experimental evidence that alternately supports or controverts a functional role of proteoglycans in bearing tensile load. In this study we sought to better reconcile these conflicting data by investigating the possibility that GAG content is differentially related to tensile tendon mechanics depending upon the anatomical subregion one considers. To test this hypothesis, we quantified the mechanical consequences of proteoglycan disruption within specific tendon anatomical subregions using an optical–mechanical measurement approach.Achilles tendons from adult mice were treated with chondroitinase ABC to obtain two groups consisting of native tendons and GAG-depleted tendons. All the tendons were mechanically tested and imaged with high-resolution digital video in order to optically quantify tendon strains. Tendon surface strains were locally analyzed in three main subregions: the central midsubstance, and the proximal and distal midsubstance near the muscle and bone insertions, respectively. Upon GAG digestion, the tendon midsubstance softened appreciably near the bone insertion, while elastic modulus in the central and proximal thirds was unchanged. Thus the contribution of PGs to tensile tendon mechanics is not straightforward and points to a heterogeneous and complex structure–function relationship in tendon. This study further highlights the importance of performing local strain analysis with regard to tensile tendon mechanics.  相似文献   

20.
Cells can sense changes in their mechanical environment and promote alterations and adaptations in tissue structure and function. Mechanical stimuli regulate such fundamental processes as cell division and differentiation and determine tissue form. The current editorial outlines the general scope of a subject area we have called 'mechanical morphogenesis'. We are promoting it as an area of special interest for future issues of the European Journal of Morphology. Clearly, mechanical loading is of pivotal importance to the development, function and repair of all tissues in the musculoskeletal system, including bone, ligament, tendon, skeletal muscle, intervertebral disc and meniscus. Bone in particular has attracted special interest and mechanical strain is central to both Wolff 's law and Frost's 'mechanostat' model of bone behaviour. But it is skeletal muscle that shows the most obvious and rapid response to altered load, with striated muscle fibres hypertrophing with strength-training programmes, and atrophing in the absence of adequate mechanical stimulation. Articular cartilage, together with tendons and ligaments is also responsive to changing exercise levels, and either abnormally high or low loads are detrimental. However, the influence of mechanical forces extends to many other organ systems, including the respiratory, cardiovascular, nervous and integumentary systems. The bronchial mucosa and the alveoli are subject to tensile and compressive loading during the volume changes that occur in respiration, and surface tension is also of paramount importance. The whole form of the cardiovascular system is driven by the haemodynamic influences of blood, and atherosclerosis has an underlying mechanical basis. The characteristic plaques tend to occur at sites of obvious mechanical significance - regions of arterial branching and curvature, where shear stress on the vessel wall may be low, but tensile stress high. Sensory perception by the nervous system has a well known mechanical basis and the cochlea is perhaps the most elaborate example of a site where sensory cells transduce mechanical forces and relay information to the brain. Mechanical force has also been proposed as a regulating factor in controlling axonal growth. Finally, the integumentary system has several structural adaptations that obviously relate to the influence of mechanical forces. The thickened layer of keratinised squames in the palms and soles is directly related to the high levels of shear at these locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号