首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5mM) and K-deficient (0.05mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2•-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2•-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots.  相似文献   

2.
The effect of exogenously applied glycinebetaine (GB) on the alleviation of damaging effects of NaCl treatment was studied in view of relative water content (RWC), malondialdehyde content, and the activity of some antioxidant enzymes in two rice (Oryza sativa L.) cultivars differing in salt tolerance (salt-tolerant Pokkali and--sensitive IR-28), comparatively. Both cultivars took up exogenously applied GB through their roots and accumulated it to considerable levels. Leaf RWC of both cultivars under salt treatment showed an increase with GB application. The activities of superoxide dismutase (SOD), ascorbate peroxidase (AP), catalase (CAT), and glutathione reductase (GR) increased in leaves of Pokkali, but peroxidase (POX) activity decreased under salinity. In IR-28, the activities of SOD, AP and POX increased, whereas CAT and GR decreased upon exposure to salt treatment. When compared to the salt-treated group alone, GB application decreased the activities of SOD, AP, CAT, and GR in Pokkali, whereas it increased the activities of CAT and AP in IR-28 under salinity. However, the activity of POX in IR-28 under salinity showed a decrease with GB application compared to the NaCl group. In addition, lipid peroxidation levels of both cvs. under salt treatment showed a decrease with GB treatment. Therefore, we conclude that GB protects both rice seedlings from salinity-induced oxidative stress.  相似文献   

3.
The activities of antioxidant enzymes viz. glutathione reductase, GR; superoxide dismutase, SOD; peroxidase, POD; catalase, CAT and glutathione-S-transferase, GST and alkaloid accumulation were investigated in leaf pairs (apical, middle, basal) and in roots of Catharanthus roseus seedlings under the conditions of different nitrogen sources (20 mM KNO(3) and 2 mM NH(4)Cl) and salinity, in the absence (non-saline control) and in the presence of 100 mM NaCl in the nutrient solution. Salinity caused a reduction in plant biomass. The biomass production of ammonium-fed plants was lower than that of nitrate-fed plants. The antioxidant enzymes exhibited higher activity in saline-treated plants. Changes in antioxidant enzyme activity caused by different nitrogen sources differed in all leaf pairs, as well as in roots of C. roseus. Ammonium-fed plants showed higher CAT, GR and GST activity in leaf pairs as well as in roots, while POD and SOD activity were higher in nitrate-fed plants. Higher peroxidase activity concomitant with the increased accumulation of alkaloid was found in all leaf pairs, as well as in roots of C. roseus of NO(3)(-) fed plants as compared to NH(4)(+) fed plants.  相似文献   

4.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

5.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

6.
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.  相似文献   

7.
Jatropha curcas L. is a sustainable energy plant with great potential for biodiesel production, and low temperature is an important limiting factor for its distribution and production. In this present work, chill hardening-induced chilling tolerance and involvement of antioxidant defense system were investigated in J. curcas seedlings. The results showed that chill hardening at 10 or 12 °C for 1 and 2 days greatly lowered death rate and alleviated electrolyte leakage as well as accumulation of the lipid peroxidation product malondialdehyde (MDA) of J. curcas seedlings under severe chilling stress at 1 °C for 1–7 days, indicating that the chill hardening significantly improved chilling tolerance of J. curcas seedlings. Measurement of activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and the levels of the antioxidants ascorbic acid (AsA) and glutathione (GSH) showed the chill hardening at 12 °C for 2 days could obviously increase the activities of these antioxidant enzymes and AsA and GSH contents in the hardened seedlings. When the hardened and non-hardening (control) seedlings were subjected to severe chilling stress at 1 °C for 1–7 days, the chill-hardened seedlings generally maintained significantly higher activities of the antioxidant enzymes SOD, APX, CAT, POD, and GR, and content of the antioxidants AsA and GSH as well as ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)], when compared with the control without chill hardening. All above-mentioned results indicated that the chill hardening could enhance the chilling tolerance, and the antioxidant defense system plays an important role in the chill hardening-induced chilling tolerance in J. curcas seedlings.  相似文献   

8.
以盐敏感型黄瓜品种‘津春2号’为材料,研究了丛枝菌根真菌(AMF)对盐胁迫下黄瓜幼苗生长及叶片、根系中渗透调节物质含量和抗氧化酶活性的影响.结果表明:(1)在盐胁迫条件下,黄瓜幼苗生长受到明显抑制,其株高、地上部、地下部干鲜重均明显减小,同时体内可溶性蛋白、可溶性糖、脯氨酸和MDA含量,以及O2(÷)产生速率和SOD、POD、CAT活性均比对照显著升高.(2)盐胁迫下接种AMF可显著促进黄瓜植株的生长,进一步提高黄瓜幼苗体内可溶性蛋白、可溶性糖和脯氨酸含量及SOD、POD、CAT活性,而显著降低MDA含量和O2(÷)产生速率.研究表明,AMF可通过显著促进盐胁迫下黄瓜幼苗体内渗透调节物质积累和抗氧化酶活性提高,有效降低体内膜脂过氧化水平,从而缓解盐胁迫对植株的伤害,增强黄瓜幼苗对盐胁迫的耐性.  相似文献   

9.
Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.  相似文献   

10.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

11.
不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应   总被引:45,自引:6,他引:39  
以抗旱性不同的2个玉米品种为材料,研究不同程度水分胁迫下玉米根系活性氧清除系统的变化及膜脂过氧化水平。明确了轻度水分胁迫下玉米根系POD、CAT、APX等保护酶活性明显提高;中、重度胁迫下其活性急剧下降,但几种酶对水分胁迫的敏感程度不同。SOD对水分胁迫表现最不敏感,在中度水分胁迫下仍保持上升趋势;抗氧化剂GSH含量变化趋势与保护酶相似;而AsA含量在不同程度水分胁迫下持续下降;MDA含量随水分胁迫程度加剧而增加。其中抗旱性强的鲁玉14与抗旱性弱的掖单13相比具有较高的保护酶活性和抗氧化剂含量,膜脂过氧化程度较轻,除POD外,品种间抗氧化酶活性(抗氧化剂含量)呈极显著差异,说明抗氧化能力强是抗旱性品种具有较强抗旱性的重要原因之一。  相似文献   

12.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

13.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

14.
王利界  周智彬  常青  范敬龙  范文鹏 《生态学报》2018,38(19):7026-7033
以一年生灰胡杨幼苗为试验材料,利用田间控盐控水的方法,进行干旱和盐胁迫试验,通过测定生长和生理生化指标探讨幼苗在盐旱交叉胁迫下的生长发育及适应规律,旨在阐明干旱及盐交叉胁迫下植物抗旱抗盐机理。研究结果表明:在盐、旱及交叉胁迫下,灰胡杨幼苗抗氧化酶活性、MDA和脯氨酸含量与对照存在显著差异(P0.05)。(1)在8、11 g/L和15 g/L盐处理下,灰胡杨幼苗相对高生长、相对枝长和冠幅增量均受到抑制,且差异显著(P0.05),而干旱胁迫和盐旱交互胁迫下差异不显著。(2)在盐胁迫、盐旱交叉胁迫下,随着胁迫程度的加重,抗氧化酶SOD、POD、CAT活性表现出先增加后降低的趋势,三者协调一致;仅干旱胁迫时,抗氧化酶SOD、POD、CAT活性显著增加;(3)在盐、旱及其盐旱交叉胁迫下,脯氨酸含量呈上升趋势,MDA含量则表现出先降低后升高趋势,这与抗氧化酶活性先升高后降低的趋势相对应。因此,抗氧化酶活性对缓解脂膜过氧化的伤害具有一定限度,MDA含量与抗氧化酶活性呈负相关,灰叶胡杨幼苗在盐旱交叉胁迫下表现出一定的耐性。  相似文献   

15.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

16.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

17.
Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress   总被引:3,自引:0,他引:3  
The effect of salt stress (100 mM and 200 mM NaCl) on antioxidant responses in shoots and roots of 14-day-old lentil (Lens culinaris M.) seedlings was investigated. Salt stress caused a significant decrease in length, wet-dry weight and an increase in proline content of both shoot and root tissues. In leaf tissues, high salinity treatment resulted in a 4.4 fold increase in H2O2 content which was accompanied by a significant level of lipid peroxidation and an increase in electrolyte leakage. Root tissues were less affected with respect to these parameters. Leaf tissue extracts exhibited four activity bands, of which two were identified as Cu/Zn-SOD and others as Fe-SOD and Mn-SOD. Fe-SOD activity was missing in root extracts. In both tissues Cu/Zn-SOD activity comprised 70–75% of total SOD activity. Salt stress did not cause a significant increase in total SOD activity of leaf tissues but a significant enhancement (88%) was observed in roots mainly due to an enhancement in Cu/ZnSOD isoforms. Compared to leaf tissues a significantly higher constitutive ascorbate peroxidase (APX) and glutathion reductase (GR) activity was observed in root tissues. Upon salt stress no significant change in the activity of APX, catalase (CAT) and GR was observed in root tissues but a higher APX activity was present when compared to leaf tissues. On the other hand, in leaf tissues, with the exception of CAT, salt stress caused significant enhancement in the activity of other antioxidant enzymes. These results suggested that, root tissues of lentil are protected better from NaCl stress induced oxidative damage due to enhanced total SOD activity together with a higher level of APX activity under salinity stress. To our knowledge this is the first report describing antioxidant enzyme activities in lentil.  相似文献   

18.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

19.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

20.
The growth of the wild-type and three salt tolerant mutants of barnyard grass ( Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants ( fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 m M NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K +/Na + ratios or enhanced Na + uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号