首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Arsenite is a well documented environmental pathogen, whereas it has also been applied as medication to treat various neoplasmas. The pathogenic and therapeutic effects of arsenite are associated with cellular apoptotic responses. However, the molecular mechanisms of arsenite-induced apoptosis are not very well understood. Our previous study has shown that arsenite exposure is able to activate JNKs, which subsequently mediate the apoptotic outcome. The present study further revealed that the coordination of JNK1 and JNK2 was critical for the arsenite-induced expression of GADD45alpha (growth arrest and DNA damage 45alpha), which in turn mediated the cellular apoptosis. The arsenite-induced apoptosis and GADD45alpha expression were significantly impaired in mouse embryonic fibroblasts deficient in either jnk1 (JNK1-/-) or jnk2 (JNK2-/-). Knockdown of GADD45alpha by its specific small interfering RNA also dramatically reduced the apoptotic responses, and overexpression of GADD45alpha in either JNK1-/- or JNK2-/- mouse embryonic fibroblasts partially resensitized the cell death. Furthermore, it was found that the regulation of GADD45alpha by JNK1 and JNK2 was achieved through mediating the activation of c-Jun, since in the JNK1-/- and JNK2-/- cells the c-Jun activation was impaired, and overexpression of the dominant negative mutant of c-Jun (TAM67) in wild type cells could also block GADD45alpha induction as well as cellular apoptosis. Our results demonstrate that the coordination of JNK1 and JNK2 is critical for c-Jun/GADD45alpha-mediated cellular apoptosis induced by arsenite.  相似文献   

4.
5.
6.
7.
NF-kappaB has been well documented to play a critical role in signaling cell stress reactions. The extracellular signal-regulated kinase (ERK) regulates cell proliferation and survival. GADD45beta is a primary cell cycle element responsive to NF-kappaB activation in anti-apoptotic responses. The present study provides evidence demonstrating that NK-kappaB, ERK and GADD45beta are co-activated by ionizing radiation (IR) in a pattern of mutually dependence to increase cell survival. Stress conditions generated in human breast cancer MCF-7 cells by the administration of a single exposure of 5 Gy IR resulted in the activation of ERK but not p38 or JNK, along with an enhancement of the NF-kappaB transactivation and GADD45beta expression. Overexpression of dominant negative Erk (DN-Erk) or pre-exposure to ERK inhibitor PD98059 inhibited NF-kappaB. Transfection of dominant negative mutant IkappaB that blocks NF-kappaB nuclear translocation, inhibited ERK activity and GADD45beta expression and increased cell radiosensitivity. Interaction of p65 and ERK was visualized in living MCF-7 cells by bimolecular fluorescence complementation analysis. Antisense inhibition of GADD45beta strikingly blocked IR-induced NF-kappaB and ERK but not p38 and JNK. Overall, these results demonstrate a possibility that NF-kappaB, ERK, and GADD45beta are able to coordinate in a loop-like signaling network to defend cells against the cytotoxicity induced by ionizing radiation.  相似文献   

8.
9.
10.
11.
目的探讨JNK信号通路对蜂胶抑制K562细胞增殖过程的调控作用。方法体外培养K562细胞,用不同浓度蜂胶、c—Jun氨基末端激酶(c—JanN—terminalkinase,JNK)特异性抑制剂SP600125对白血病K562细胞进行处理,用MTT法检测细胞增殖抑制率,流式细胞术(FCM)检测细胞凋亡率,Western印迹检测JNK下游分子c—Jun以及磷酸化c—Jan(p-c-Jun)的变化。结果蜂胶作用K562细胞后,增殖抑制率、凋亡率显著升高,具有时间和剂量依赖性,并伴随p-c-Jun蛋白水平上调;加入SP600125能下调p-c-Jun的水平,显著提高蜂胶对K562细胞的增殖抑制率和凋亡率。结论JNK信号通路参与了蜂胶抑制K562细胞增殖过程的调控。抑制JNK活性可增强蜂胶对K562细胞的增殖抑制、凋亡诱导作用。  相似文献   

12.
13.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   

14.
15.
Osteosarcoma is characterized by a high malignant and metastatic potential, which points to the need for new therapeutic strategies to prevent cell metastasis. In this study, we show that statin-induced HMG-CoA reductase inhibition reduces cell migration and invasion in human and murine osteosarcoma cells, independently of the genotype. The statin-induced reduction of cell migration and invasion was independent of induction of apoptosis and was geranylgeranylpyrophosphate-dependent. The statin reduced matrix metalloproteinase (MMP) 2, 9, and 14 and TIMP2 expression or activity in invading cells. Forced expression of MMP2 and MMP14 overcame the inhibitory effect of the statin on cell invasion, suggesting a role for these MMPs in invasive potential. We also investigated the mechanisms involved in the reduced MMP2 activity and cell invasion. Inhibition of JNK, but not ERK1/2 signaling, reduced MMP2 activity. Pharmacological or constitutive activation of JNK overcame the reduced MMP2 activity and cell invasion induced by the statin. The statin decreased JNK phosphorylation and c-Jun nuclear translocation, suggesting that HMG-CoA reductase inhibition targets the JNK-c-Jun signaling pathway. We showed that mevalonate or geranylgeranylpyrophosphate treatment prevented the statin-induced reduction in JNK phosphorylation, MMP2 activity, and cell invasion. Forced expression of a constitutively active form of RhoA increased JNK phosphorylation and overcame the inhibitory effect of atorvastatin on MMP2 activity and cell invasion. The data establish a link between RhoA, JNK, c-Jun, and MMP2 activity that is functionally involved in the reduction in osteosarcoma cell invasion by the statin. This suggests a novel strategy targeting RhoA-JNK-c-Jun signaling to reduce osteosarcoma cell tumorigenesis.  相似文献   

16.
目的:分析Wnt-beta-catenin 信号通路在骨肉瘤发展中的作用和对化疗效果的影响。方法:采用免疫组织化学、实时定量PCR 与Western blotting 比较人成骨细胞(human fetal osteoblasts,hFOB)和骨肉瘤(human OS,Saos2)细胞及人骨肉瘤细胞样本中 Wnt-beta-catenin信号通路相关分子的表达,比较hFOB和Saos2 细胞的表达差异。采用萤光素酶实验观察Wnt-beta-catenin、Notch、Hh 信号通路对氨甲喋呤(methotrexate,MTX)疗效的调控。结果:同hFOB细胞相比该通路的主要分子包括:Wnt3(5.5 倍)、beta-catenin (5.3 倍)、LEF1(7.6 倍),在Saos2细胞中表达明显上调。Western blotting 分析表明总beta-catenin 以及活化beta-catenin 的表达都升高。 MTX 处理后诱导了Saos2 细胞凋亡和坏死。对Wnt-beta-catenin、Notch、Hh 信号通路的化学抑制也能够诱导细胞死亡, Wnt-beta-catenin抑制剂更为明显。结论:采用小分子/ 化合物来抑制Wnt-茁-catenin 和Notch 信号,并同目前常用的OS药物化疗联 合使用,对于复发和转移的患者,有望改善患者的生存期。  相似文献   

17.
The p53 tumor suppressor gene plays an important role during induction of apoptosis in cancer. In contrast, NF-κB prevents apoptosis in response to chemotherapeutic agents and is a critical regulator of cell survival. Despite the riches of information on the regulation of wild-type p53 function by phosphorylation, nothing is known about the modulation of mutant p53 activity by phosphorylation. Here we report that inhibition of NF-κB in DU145 prostate cancer cells results in p53 mutant phosphorylation at serine 15 (Ser15), leading to an increase of p53 stability, DNA binding and gain of function. Serine 15-phosphorylation is due to GADD45a-dependent induction of JNK kinase, which can be blocked by SP600125, a JNK kinase inhibitor. Furthermore, inhibition of GADD45a by small interfering RNA blocks JNK activation and abrogates Ser15 phosphorylation. Together, these results highlight the importance of Ser15 phosphorylation in regulating the oncogenic function of mutant p53 and apoptosis induction in the context of the NF-κB/IκB signaling pathway.  相似文献   

18.
Here, we identified caspase-2, protein kinase C (PKC)delta, and c-Jun NH2-terminal kinase (JNK) as key components of the doxorubicin-induced apoptotic cascade. Using cells stably transfected with an antisense construct for caspase-2 (AS2) as well as a chemical caspase-2 inhibitor, we demonstrate that caspase-2 is required in doxorubicin-induced apoptosis. We also identified PKCdelta as a novel caspase-2 substrate. PKCdelta was cleaved/activated in a caspase-2-dependent manner after doxorubicin treatment both in cells and in vitro. PKCdelta is furthermore required for efficient doxorubicin-induced apoptosis because its chemical inhibition as well as adenoviral expression of a kinase dead (KD) mutant of PKCdelta severely attenuated doxorubicin-induced apoptosis. Furthermore, PKCdelta and JNK inhibition show that PKCdelta lies upstream of JNK in doxorubicin-induced death. Jnk-deficient mouse embryo fibroblasts (MEFs) were highly resistant to doxorubicin compared with wild type (WT), as were WT Jurkat cells treated with SP600125, further supporting the importance of JNK in doxorubicin-induced apoptosis. Chemical inhibitors for PKCdelta and JNK do not synergize and do not function in doxorubicin-treated AS2 cells. Caspase-2, PKCdelta, and JNK were furthermore implicated in doxorubicin-induced apoptosis of primary acute lymphoblastic leukemia blasts. The data thus support a sequential model involving caspase-2, PKCdelta, and JNK signaling in response to doxorubicin, leading to the activation of Bak and execution of apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号