首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology.  相似文献   

2.
The target of rapamycin (TOR) proteins in Saccharomyces cerevisiae, TOR1 and TOR2, redundantly regulate growth in a rapamycin-sensitive manner. TOR2 additionally regulates polarization of the actin cytoskeleton in a rapamycin-insensitive manner. We describe two functionally distinct TOR complexes. TOR Complex 1 (TORC1) contains TOR1 or TOR2, KOG1 (YHR186c), and LST8. TORC2 contains TOR2, AVO1 (YOL078w), AVO2 (YMR068w), AVO3 (YER093c), and LST8. FKBP-rapamycin binds TORC1, and TORC1 disruption mimics rapamycin treatment, suggesting that TORC1 mediates the rapamycin-sensitive, TOR-shared pathway. FKBP-rapamycin fails to bind TORC2, and TORC2 disruption causes an actin defect, suggesting that TORC2 mediates the rapamycin-insensitive, TOR2-unique pathway. Thus, the distinct TOR complexes account for the diversity, specificity, and selective rapamycin inhibition of TOR signaling. TORC1 and possibly TORC2 are conserved from yeast to man.  相似文献   

3.
The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells.  相似文献   

4.
The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref.?). As TORC2 regulates sphingolipid metabolism, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.  相似文献   

5.
The conserved target of rapamycin (TOR) kinases regulate many aspects of cellular physiology. They exist in two distinct complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2), that posses both overlapping and distinct components. TORC1 and TORC2 respond differently to the drug rapamycin and have different cellular functions: whereas the rapamycin-sensitive TORC1 controls many aspects of cell growth and has been characterized in great detail, the TOR complex 2 is less understood and regulates actin polymerization, cell polarity, and ceramide metabolism. How signaling specificity and discrimination between different input signals for the two kinase complexes is achieved is not understood. Here, we show that TORC1 and TORC2 have different localizations in Saccharomyces cerevisiae. TORC1 is localized exclusively to the vacuolar membrane, whereas TORC2 is localized dynamically in a previously unrecognized plasma membrane domain, which we term membrane compartment containing TORC2 (MCT). We find that plasma membrane localization of TORC2 is essential for viability and mediated by lipid binding of the C-terminal domain of the Avo1 subunit. From these data, we suggest that the TOR complexes are spatially separated to determine downstream signaling specificity and their responsiveness to different inputs.  相似文献   

6.
To further understand the roles played by the essential phosphoinositide PI4,5P(2), we have used a synthetic lethal analysis, which systematically combined the mss4(ts) mutation, partially defective in PI4P 5-kinase activity, with each of approximately 4700 deletion mutations. This genomic screening technique uncovered numerous new candidate effectors and regulators of PI4,5P(2) in yeast. In particular, we identified Slm1 (Yil105c), a previously uncharacterized PI4,5P(2) binding protein. Like Mss4, Slm1 and its homolog Slm2 (Ynl047c) were required for actin cytoskeleton polarization and viability. Co-immunoprecipitation experiments revealed that Slm1 interacts with a component of TORC2, a Tor2 kinase-containing complex, which also regulates the actin cytoskeleton. Consistent with these findings, phosphorylation of Slm1 and Slm2 was dependent on TORC2 protein kinase activity, both in vivo and in vitro, and Slm1 localization required both PI4,5P(2) and functional TORC2. Together, these data suggest that Slm1 and Slm2 function downstream of PI4,5P(2) and the TORC2 kinase pathway to control actin cytoskeleton organization.  相似文献   

7.
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.  相似文献   

8.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P(2) are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P(2) in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P(2) through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P(2) regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P(2) and TORC2 to modulate polarized actin assembly and growth.  相似文献   

9.
The target of rapamycin (TOR) kinase is an important regulator of growth in eukaryotic cells. In budding yeast, Tor1p and Tor2p function as part of two distinct protein complexes, TORC1 and TORC2, where TORC1 is specifically inhibited by the antibiotic rapamycin. Significant insight into TORC1 function has been obtained using rapamycin as a specific small molecule inhibitor of TOR activity. Here we show that caffeine acts as a distinct and novel small molecule inhibitor of TORC1: (i) deleting components specific to TORC1 but not TORC2 renders cells hypersensitive to caffeine; (ii) rapamycin and caffeine display remarkably similar effects on global gene expression; and (iii) mutations were isolated in Tor1p, a component specific to TORC1, that confers significant caffeine resistance both in vivo and in vitro. Strongest resistance requires two simultaneous mutations in TOR1, the first at either one of two highly conserved positions within the FRB (rapamycin binding) domain and a second at a highly conserved position within the ATP binding pocket of the kinase domain. Biochemical and genetic analyses of these mutant forms of Tor1p support a model wherein functional interactions between the FRB and kinase domains, as well as between the FRB domain and the TORC1 component Kog1p, regulate TOR activity as well as contribute to the mechanism of caffeine resistance.  相似文献   

10.
The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.  相似文献   

11.
Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.  相似文献   

12.
The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.  相似文献   

13.
Cell proliferation, metabolism, migration and survival are coordinated through the tight control of two target of rapamycin (TOR) kinase complexes: TORC1 and TORC2. Here, we show that a novel phosphorylation of fission yeast Gad8 (AGC kinase) on the evolutionarily conserved threonine 6 (Thr6) prevents the physical association between Gad8 and TORC2. Accordingly, this block to protein interactions by Gad8 Thr6 phosphorylation decreases TORC2-controlled activation of Gad8. Likewise, phosphorylation of Gad8 Thr6, possibly by PKC, prevents the association of Gad8 with TORC2 thereby increasing TORC2 activity, because it reduces Gad8-mediated feedback inhibition of TORC2. Consistently, the introduction of a Gad8 T6D mutant, that mimics phosphorylation, increased TORC2 activity. Increased PKCPck2 expression prevented Gad8–TORC2 binding and so reduced the TORC2-mediated phosphorylation of Gad8 serine 546 that activates Gad8. Interestingly, independent of the Ser546 phosphorylation status, Gad8 Thr6 phosphorylation is important for remodelling the actin cytoskeleton and survival upon potassium ion and heat stresses. In contrast, Ser546 phosphorylation is required for the control of G1 arrest, mating, cell length at division and vascular size. Finally, these findings reveal a novel mode of TORC2 activation that is essential for cell survival following stress.  相似文献   

14.
Ariadne Vlahakis  Ted Powers 《Autophagy》2014,10(11):2085-2086
The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca2+- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.  相似文献   

15.
《Autophagy》2013,9(11):2085-2086
The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca2+- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.  相似文献   

16.
17.
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.  相似文献   

18.
Two mechanisms have emerged as major regulators of membrane shape: BAR domain‐containing proteins, which induce invaginations and protrusions, and nuclear promoting factors, which cause generation of branched actin filaments that exert mechanical forces on membranes. While a large body of information exists on interactions of BAR proteins with membranes and regulatory proteins of the cytoskeleton, little is known about connections between these two processes. Here, we show that the F‐BAR domain protein pacsin2 is able to associate with actin filaments using the same concave surface employed to bind to membranes, while some other tested N‐BAR and F‐BAR proteins (endophilin, CIP4 and FCHO2) do not associate with actin. This finding reveals a new level of complexity in membrane remodeling processes.  相似文献   

19.
Liu AP  Fletcher DA 《Biophysical journal》2006,91(11):4064-4070
The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been identified. Here we show that branched actin networks formed on model lipid membranes enriched with the lipid second messenger PIP(2) trigger both temporal and spatial rearrangement of membrane components. Using giant unilamellar vesicles able to separate into two coexisting liquid phases, we demonstrate that polymerization of dendritic actin networks on the membrane induces phase separation of initially homogenous vesicles. This switch-like behavior depends only on the PIP(2)-N-WASP link between the membrane and actin network, and we find that the presence of a preexisting actin network spatially biases the location of phase separation. These results show that dynamic, membrane-bound actin networks alone can control when and where membrane domains form and may actively contribute to membrane organization during cell signaling.  相似文献   

20.
The Tor1p and Tor2p kinases, targets of the therapeutically important antibiotic rapamycin, function as components of two distinct protein complexes in yeast, termed TOR complex 1 (TORC1) and TORC2. TORC1 is responsible for a wide range of rapamycin-sensitive cellular activities and contains, in addition to Tor1p or Tor2p, two highly conserved proteins, Lst8p and Kog1p. By identifying proteins that co-purify with Tor1p, Tor2p, Lst8p, and Kog1p, we have characterized a comprehensive set of protein-protein interactions that define further the composition of TORC1 as well as TORC2. In particular, we have identified Tco89p (YPL180w) and Bit61p (YJL058c) as novel components of TORC1 and TORC2, respectively. Deletion of TOR1 or TCO89 results in two specific and distinct phenotypes, (i) rapamycin-hypersensitivity and (ii) decreased cellular integrity, both of which correlate with the presence of SSD1-d, an allele of SSD1 previously associated with defects in cellular integrity. Furthermore, we link Ssd1p to Tap42p, a component of the TOR pathway that is believed to act uniquely downstream of TORC1. Together, these results define a novel connection between TORC1 and Ssd1p-mediated maintenance of cellular integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号