首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Many physicochemical and biotic aspects of the soil environment determine the community composition of bacteria. In this study, we examined the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition of bacterial communities after long-term (7-8 years) enrichment culture in the presence of a plant host. We showed that the phylogeny of arbuscular mycorrhizal fungal isolates was a highly significant predictor of bacterial community composition, as assessed by cluster analysis, redundancy analysis and linear discriminant analysis of phospholipid fatty acid patterns. Numerous phospholipid fatty acids differed between the phylogenetic groupings; this pattern also held for fungal-origin phospholipid fatty acids and in a combined bacterial/fungal analysis, suggesting that categorizing phospholipid fatty acids into predominantly bacterial and fungal origin did not affect the overall outcome. The mechanisms underlying this observation could include substrate quality (and quantity) effects, interactions mediated by the host plant (e.g. rhizodeposition) and direct biotic interactions between arbuscular mycorrhizal fungi and bacterial populations. Our results suggest that aspects of arbuscular mycorrhizal fungal functions may be partially explained by the symbiosis-accompanying bacterial communities, a possibility that should be explicitly considered in studies examining the roles of arbuscular mycorrhizal fungal species diversity in soil and ecosystem processes.  相似文献   

2.
The effects of arbuscular mycorrhizal (AM) symbiosis on ramet and genet densities, vegetative growth rates, and flowering of three forb species were studied in native tallgrass prairie in northeastern Kansas. Mycorrhizal activity was experimentally suppressed for six growing seasons on replicate plots in an annually burned and an infrequently burned watershed with the fungicide benomyl. Benomyl reduced mycorrhizal root colonization to an average of 4.2%, approximately a two-thirds reduction relative to controls (13.7% colonization). Mycorrhizae influenced the population structure of these forbs. Although mycorrhizal suppression had no long-term effect on genet densities and no effect on ramet survivorship throughout the growing season, the number of ramets per individual was significantly increased such that ramet densities of all three species were approximately doubled in response to long-term mycorrhizal suppression. Effects of mycorrhizae on ramet growth and reproduction varied among species. Ramet growth rates, biomass, and flowering of Salvia azurea were greater in plots with active mycorrhizal symbiosis, whereas mycorrhizae reduced ramet growth rates and biomass of Artemesia ludoviciana. Aster sericeus ramet growth rates and biomass were unaffected by the fungicide applications, but its flowering was reduced.The pattern of responses of these three species to mycorrhizae differed considerably between the two sites of contrasting fire regime, indicating that the interaction of fire-induced shifts in resource availability and mycorrhizal symbiosis together modulates plant responses and the intensity and patterns of interspecific competition between and among tallgrass prairie grass and forb species. Further, the results indicate that effects of mycorrhizae on community structure are a result of interspecific differences in the balance between direct positive effects of the symbiosis on host plant performance and indirect negative effects mediated through altered competitive interactions.  相似文献   

3.
We measured the influences of soil fertility and plant community composition on Glomeromycota, and tested the prediction of the functional equilibrium hypothesis that increased availability of soil resources will reduce the abundance of arbuscular mycorrhizal (AM) fungi. Communities of plants and AM fungi were measured in mixed roots and in Elymus nutans roots across an experimental fertilization gradient in an alpine meadow on the Tibetan Plateau. As predicted, fertilization reduced the abundance of Glomeromycota as well as the species richness of plants and AM fungi. The response of the glomeromycotan community was strongly linked to the plant community shift towards dominance by Elymus nutans. A reduction in the extraradical hyphae of AM fungi was associated with both the changes in soil factors and shifts in the plant community composition that were caused by fertilization. Our findings highlight the importance of soil fertility in regulating both plant and glomeromycotan communities, and emphasize that high fertilizer inputs can reduce the biodiversity of plants and AM fungi, and influence the sustainability of ecosystems.  相似文献   

4.
Plant/soil microbial community feedback can have important consequences for species composition of both the plant and soil microbial communities, however, changes in nutrient availability may alter plant reliance on mycorrhizal fungi. In this research, we tested whether plant/soil community feedback occurs and if increased soil fertility altered the plant/soil community interactions. In two greenhouse experiments we assessed plant and AM fungal performance in response to different soils (and their microbial communities), collected from under three co-occurring plants in serpentine grasslands, and nutrient treatments. The first experiment consisted of two plant species (Andropogon gerardii, Sorghastrum nutans), their soil communities, and three nutrient treatments (control, calcium, N-P-K), while the second experiment used three plant species (first two and Schizachyrium scoparium), their soil communities collected from a different site, and two nutrient treatments (control, N-P-K). Plant/soil community feedback was observed with two of the three species and was significantly affected by nutrient enrichment. Negative Sorghastrum/soil feedback was removed with the addition of N-P-K fertilizer at both sites. Andropogon/soil feedback varied between sites and nutrient treatments, while no differential Schizachyrium growth relative to soil community was observed. Addition of N-P-K fertilizer to the nutrient poor serpentine soils increased plant biomass production and affected plant/soil community interactions. Calcium addition did not affect plant biomass, but was associated with significant increases in fungal colonization regardless of plant species or soil community. Our results indicate that nutrient enrichment affected plant/soil community feedback, which has the potential to affect plant and soil community structure.  相似文献   

5.
The aim of plant restoration projects is usually the recovery of the original native plant communities. However, in The Netherlands after restoration management practices have been completed, novel plant communities often develop and there is a return of only 50% to 60% of the desired plant species. A potential cause could be that the biological communities of the soil develop insufficiently to support a high diversity of plant species. This research project focused on the role of the soil biological community in controlling plant diversity. In particular, this project studied whether arbuscular mycorrhizal fungi a major component of the soil biological community, promote native plants. Field research indicated that arbuscular mycorrhizal fungi were present in the soil, even though colonization levels of arbuscules were low, 10% or less. The greatest abundance of arbuscular mycorrhizal fungi was observed at locations where the top soil was removed and where nutrient concentrations were reduced. The results of pot experiments showed that applied arbuscular mycorrhizal fungi significantly promoted the growth of native plant species. A cost benefit analysis revealed that the benefits of applying arbuscular mycorrhizal fungi exceeded the costs. This makes the application of arbuscular mycorrhizal fungi an attractive proposition.  相似文献   

6.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Soil biota could have a significant impact on plant productivity and diversity through benefiting plants and mediating plant–plant interaction. However, it is poorly understood how soil biotic factors interaction with abiotic environments affect plant community diversity and composition. Here, we investigate the community‐level consequences of arbuscular mycorrhizal fungi (AMF) interactions with multiple nutrients and their ecological stoichiometry. We conducted a greenhouse experiment manipulating nitrogen (N) and phosphorus (P) to create soil nutrient availability and N:P gradients for microcosm communities with and without AMF. We found that AMF suppressed plant diversity at low P levels, whereas it did not alter the diversity at high P levels because of trade‐offs in the abundance of the dominant and subordinate species. AMF reduced plant diversity at the intermediate N:P ratios, while AMF did not affect the diversity at low and high N:P ratios. P addition decreased the mycorrhizal contribution to community productivity, whereas N addition reduced the negative effects of AMF on productivity at high P levels. AMF decreased community productivity at low N:P ratios but increased it at high N:P ratios. AMF increased the stoichiometric homoeostasis of plant communities, which was positively correlated with the stability of productivity under variations in soil N:P ratios. Our study demonstrates that both resource availability and stoichiometry influence the effect of AMF on plant community productivity and diversity and suggests that AMF may increase the stability of plant communities under variations in the soil nutrients by increasing the stoichiometric homoeostasis of the plant community.  相似文献   

8.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

9.
Plant-soil microbial interactions have moved into focus as an important mechanism for understanding plant coexistence and composition of communities. Both arbuscular mycorrhizal (AM) as well as other root endophytic fungi co-occur in plant roots, and therefore have the potential to influence relative abundances of plant species in local assemblages. However, no study has experimentally examined how these key root endosymbiont groups might interact and affect plant community composition. Here, using an assemblage of five plant species in mesocosms in a fully factorial experiment, we added an assemblage of AM fungi and/or a mixture of root endophytic fungal isolates, all obtained from the same grassland field site. The results demonstrate that the AM fungi and root endophytes interact to affect plant community composition by changing relative species abundance, and consequently aboveground productivity. Our study highlights the need to explicitly consider interactions of root-inhabiting fungal groups in studies of plant assemblages.  相似文献   

10.
Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co‐occurrences that are not constrained by environmental conditions. In this study, we investigated co‐occurrences among root‐associated fungi, asking whether fungi co‐occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root‐associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co‐occurrences that could be explained by the environmental conditions and the host plant species, as well as those co‐occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co‐occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root‐associated fungi are predominantly positive.  相似文献   

11.
Most plant communities support a diverse assemblage of arbuscular mycorrhizal fungi (AMF). AMF communities have the potential to affect plant community structure and vice versa. We examined AMF sporulation in a 4.5‐ha reconstructed prairie in Eau Claire County, Wisconsin. In fall 2003, the site was planted with varied numbers and combinations of native prairie species from four functional guilds: C3 grasses/sedges, C4 grasses, legume, and nonleguminous forbs. We hypothesized that more diverse plant seeding mixtures would promote AMF diversity. To examine the interaction between plant and fungal communities, plots were divided and subplots treated with the fungicide chlorothalonil to suppress AMF, enriched with ammonium nitrate fertilizer, treated with both fungicide and nitrogen, or remained untreated (control). Soil samples were collected during the summers of 2004, 2006, and 2007 from each subplot. Spores of AMF were extracted, identified to species, and enumerated. Initial plant seeding diversity did not significantly influence spore abundance, fungal diversity, plant productivity, or plant richness 4 years after establishment. Fungal species richness was positively, but weakly, correlated with plant productivity (r2 = 0.11) and plant richness (r2 = 0.09). Fungal community composition changed significantly over time; nitrogen addition, fungicide application, and site characteristics also shaped community composition. After 4 years of treatment, nitrogen and fungicide reduced AMF richness, changed sporulation patterns among AMF taxa, and reduced diversity and productivity in plant communities. Divergence in AMF community is being mirrored by changes in the plant community independent of initial seeding treatments, though causation could not be determined.  相似文献   

12.
Aims The majority of angiosperms are pollinated by animals, and this interaction is of enormous importance in both agricultural and natural systems. Pollinator behavior is influenced by plants' floral traits, and these traits may be modified by interactions with other community members. In recent years, knowledge of ecological linkages between above- and belowground organisms has grown tremendously. Soil communities are extremely diverse, and when their interactions with plants influence floral characteristics, they have the potential to alter pollinator attraction and visitation, but plant–pollinator interactions have been neglected in studies of the direct and indirect effects of soil organism–root interactions. Here, we review these belowground interactions, focusing on the effects of nitrogen-fixing bacteria, arbuscular mycorrhizal fungi and root-feeding herbivores, and their effects on floral traits and pollinators. Further, we identify gaps in our knowledge of these indirect effects and recommend promising directions and topics that should be addressed by future research.Important findings Belowground organisms can influence a wide variety of floral traits that are important mediators of pollinator attraction, including the number and size of flowers and nectar and pollen production. Other traits that are known to influence pollinators in some plant species, such as floral volatiles, color and nectar composition, have rarely or never been examined in the context of belowground plant interactions. Despite clear effects on flowers, relatively few studies have measured pollinator responses to belowground interactions. When these indirect effects have been studied, both arbuscular mycorrhizal fungi and root herbivores were found to shift pollinator visitation patterns. Depending on the interaction, these changes may either increase or decrease pollinator attraction. Finally, we discuss future directions for ecological studies that will more fully integrate belowground ecology with pollination biology. We advocate a multilevel approach to these questions to not only document indirect effect pathways between soil interactions and pollination but also identify the mechanisms driving changes in pollinator impacts and the resultant effects on plant fitness. A more thorough understanding of these indirect interactions will advance ecological theory and may inform management strategies in agriculture and conservation biology.  相似文献   

13.
Because different species of mycorrhizal fungi have different effects on the growth of particular plant species, variation in mycorrhizal fungus species composition could cause changes in the strength of plant-plant interactions. Results are presented from a growth chamber experiment that compared the strength of interactions among seedlings of ponderosa pine (Pinus ponderosa) when the pines were colonized by two different groups of ectomycorrhizal fungi in the genus Rhizopogon. Plant density effects differed between the two groups of mycorrhizal fungi: plant growth was low regardless of density when plants were colonized with pine-specific Rhizopogon species, while plant growth declined with plant density when plants were colonized by Rhizopogon species having a broader host range. This result parallels results from previous studies showing that plant interactions are more antagonistic with mycorrhizal fungi than without, implying that plant responsiveness to beneficial mycorrhizal fungi declines with increasing plant density. If such effects are prevalent in plant communities, then variation in mycorrhizal fungus community composition is predicted to have a density-dependent effect on plants.  相似文献   

14.
The diversity of pathways through which mycorrhizal fungi alter plant coexistence hinders the understanding of their effects on plant‐plant interactions. The outcome of plant facilitative interactions can be indirectly affected by mycorrhizal symbiosis, ultimately shaping biodiversity patterns. We tested whether mycorrhizal symbiosis enhances plant facilitative interactions and whether its effect is consistent across different methodological approaches and biological scenarios. We conducted a meta‐analysis of 215 cases (involving 21 nurse and 29 facilitated species), in which the performance of a facilitated plant species is measured in the presence or absence of mycorrhizal fungi. We show that mycorrhizal fungi significantly enhance plant facilitative interactions mainly through an increment in plant biomass (aboveground) and nutrient content, although their effects differ across biological contexts. In semiarid environments mycorrhizal symbiosis enhances plant facilitation, while its effect is non‐significant in temperate ecosystems. In addition, arbuscular but not ecto‐mycorrhizal (EMF) fungi significantly enhance plant facilitation, particularly increasing the P content of the plants more than EMF. Some knowledge gaps regarding the importance of this phenomenon have been detected in this meta‐analysis. The effect of mycorrhizal symbiosis on plant facilitation has rarely been assessed in other ecosystems different from semiarid and temperate forests, and rarely considering other fungal benefits provided to plants besides nutrients. Finally, we are still far from understanding the effects of the whole fungal community on plant‐plant interactions, and on plant species coexistence.  相似文献   

15.
Arbuscular mycorrhizal (AM) fungal communities can influence the species composition of plant communities. This influence may result from effects of AM on seedling recruitment, although the existing evidence is limited to experimental systems. We addressed the impact of AM fungi on the plant community composition and seedling recruitment of two species – Oxalis acetosella and Prunella vulgaris – in a temperate forest understory. We established a field experiment over two years in which soil fertility (using fertilizer to enhance and sucrose to decrease fertility) and the activity of AM fungi (using fungicide) was manipulated in a factorial design. Species richness, diversity and community composition of understory plants were not influenced by soil fertility or AM fungal activity treatments. However, plant community composition was marginally significantly affected by the interaction of these treatments as the effect of AM fungal activity became evident under enhanced soil fertility. Suppression of AM fungal activity combined with decreased soil fertility increased the number of shoots of herbaceous plants. Unchanged activity of AM fungi enhanced the growth of O. acetosella seedlings under decreased soil fertility, but did not influence the growth of P. vulgaris seedlings. We conclude that the role of AM fungi in structuring plant communities depends on soil fertility. AM fungi can have a strong influence on seedling recruitment, especially for those plants that are characteristic of the habitat.  相似文献   

16.
Chenopods are generally regarded as non-host plants for mycorrhizal fungi and are believed not to benefit from colonization by mycorrhizal fungi. Perennial Atriplex nummularia Lindl., growing under field conditions, showed a relatively high level of colonization by mycorrhizal fungi (10–30% of root length colonized) in spring and summer. Accordingly, two glasshouse experiments were designed to assess the effects of inoculation with mycorrhizal fungi (with a single species or a mixture of different species) on growth, nutrient uptake, and rhizosphere bacterial community composition of A. nummularia at high and low salinity levels (2.2 and 12 dSm–1). Only low and patchy colonization by mycorrhizal fungi (1–2 of root length colonized) was detected in inoculated plants under glasshouse conditions which was unaffected by salinity. Despite the low colonization, inoculation increased plant growth and affected nutrient uptake at both salinity levels. The effects were higher at an early stage of plant development (6weeks) than at a later stage (9–10 weeks). Salinity affected the bacterial community composition in the rhizosphere as examined by ribosomal intergenic spacer amplification (RISA) of 16S rDNA, digitization of the band patterns and multivariate analysis. The effects of inoculation with mycorrhizal fungi on growth of A. nummularia may be attributed to (i) direct effects of mycorrhizal fungi on plant nutrient uptake and/or (ii) indirect effects via mycorrhizal-induced changes in the bacterial community composition.  相似文献   

17.
Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.  相似文献   

18.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

19.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

20.
Nitrogen (N) inputs to ecosystems have increased worldwide, often leading to large changes in plant community structure and reducing plant diversity. Yet, the interaction of increased N availability with other factors that determine plant community composition, are still poorly understood. Here, we test whether the impact of N addition on plant communities depends on the presence of arbuscular mycorrhizal fungi (AMF). AMF are widespread plant symbionts that facilitate growth of many plant species. We hypothesize that AM fungi reduce the negative impact of N addition on plant communities by supporting growth of species that are sensitive to N enrichment.We established experimental grassland microcosms consisting of 18 plant species. These microcosms were subjected to high and low N supply and were inoculated with AMF or remained nonmycorrhizal. Both N addition and AMF had a big impact on plant community composition, but with opposite effects. N addition induced a 2.8‐fold increase in grass biomass and reduced legume biomass. Grasses dominated the microcosms at high N supply, especially when AMF were absent. In contrast, AMF enhanced biomass of all legumes species (on average 6.8‐fold) and reduced the relative abundance of grasses. The proportion of legume biomass out of total shoot biomass at high N supply was 19% with AMF and only 3% without AMF. Our results show that responses of plant communities to N enrichment depend on AMF and that AMF can reduce the negative impact of increased N availability on plant community structure by reducing grass dominance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号