首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

2.
The release of mitochondrial proapoptotic proteins into the cytosol is the key event in apoptosis signaling, leading to the activation of caspases. Once in the cytosol, cytochrome c triggers the formation of a caspase-activating protein complex called the apoptosome, whereas Smac/Diablo and Omi/htra2 antagonize the caspase inhibitory effect of inhibitor of apoptosis proteins (IAPs). Here, we identify diarylurea compounds as effective inhibitors of the cytochrome c-induced formation of the active, approximately 700-kDa apoptosome complex and caspase activation. Using diarylureas to inhibit the formation of the apoptosome complex, we demonstrated that cytochrome c, rather than IAP antagonists, is the major mitochondrial caspase activation factor in tumor cells treated with tumor necrosis factor. Thus, we have identified a novel class of compounds that inhibits apoptosis by blocking the activation of the initiator caspase 9 by directly inhibiting the formation of the apoptosome complex. This mechanism of action is different from that employed by the widely used tetrapeptide inhibitors of caspases or known endogenous apoptosis inhibitors, such as Bcl-2 and IAPs. Thus, these compounds provide a novel specific tool to investigate the role of the apoptosome in mitochondrion-dependent death paradigms.  相似文献   

3.
There are at least two distinct classes of caspases, initiators (e.g. caspases-8, -9, and -10) and effectors (e.g. caspase-3). Furthermore, it is believed that there are two distinct primary apoptotic signaling pathways, one of which is mediated by death receptors controlled by caspases-8/10, and the other by the release of cytochrome c and activation of a caspase-9/Apaf1/cytochrome c apoptosome. However, several recent reports have demonstrated that caspase-8, and its substrate Bid, are frequently activated in response to certain apoptotic stimuli in a death receptor-independent manner. These results suggest that significant cross-talk may exist between these two distinct signaling arms, allowing each to take advantage of elements unique to the other. Here we provide evidence that activation of caspase-8, and subsequent Bid cleavage, does indeed participate in cytochrome c-mediated apoptosis, at least in certain circumstances and cell types. Furthermore, the participation of activated caspase-3 is essential for activation of caspase-8 and Bid processing to occur. Although caspase-8 activation is not required for the execution of a cytochrome c-mediated death signal, we found that it greatly shortens the execution time. Thus, caspase-8 involvement in cytochrome c-mediated cell death may help to amplify weaker death signals and ensure that apoptosis occurs within a certain time frame.  相似文献   

4.
The Apaf-1 apoptosome: a large caspase-activating complex   总被引:19,自引:0,他引:19  
Cain K  Bratton SB  Cohen GM 《Biochimie》2002,84(2-3):203-214
It is increasingly recognized that many key biological processes, including apoptosis, are carried out within very large multi-protein complexes. Apoptosis can be initiated by activation of death receptors or perturbation of the mitochondria causing the release of apoptogenic proteins, which result in the activation of caspases which are responsible for most of the biochemical and morphological changes observed during apoptosis. Caspases are normally inactive and require proteolytic processing for activity and this is achieved by the formation of large protein complexes known as the DISC (death inducing signalling complex) and the apoptosome. In the case of the latter complex, the central scaffold protein is a mammalian CED-4 homologue known as Apaf-1. This is an approximately 130 kDa protein, which in the presence of cytochrome c and dATP oligomerizes to form a very large (approximately 700-1400 kDa) apoptosome complex. The apoptosome recruits and processes caspase-9 to form a holoenzyme complex, which in turn recruits and activates the effector caspases. The apoptosome has been described in cells undergoing apoptosis, in dATP activated cell lysates and in reconstitution studies with recombinant proteins. Recent studies show that formation and function of the apoptosome can be regulated by a variety of factors including intracellular levels of K(+), inhibitor of apoptosis proteins (IAPs), heat shock proteins and Smac/Diablo. These various factors thus ensure that the apoptosome complex is only fully assembled and functional when the cell is irrevocably destined to die.  相似文献   

5.
Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.  相似文献   

6.
Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis. Here, we show that this drug induces apoptosis through proteins of the death receptor pathway, which leads to an activation of the intrinsic apoptotic pathway. Apoptosis induced by Ino-C2-PAF and its glucosidated derivate, Glc-PAF, was dependent on the DISC components FADD and caspase-8. This can be inhibited in FADD−/− and caspase-8−/− cells, in which the breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of caspase-9, -8 and -3 do not occur. In addition, the overexpression of crmA, c-Flip or dominant negative FADD as well as treatment with the caspase-8 inhibitor z-IETD-fmk protected against Ino-C2-PAF-induced apoptosis. Apoptosis proceeds in the absence of CD95/Fas-ligand expression and is independent of blockade of a putative death-ligand/receptor interaction. Furthermore, apoptosis cannot be inhibited in CD95/Fas−/− Jurkat cells. Expression of Bcl-2 in either the mitochondria or the endoplasmic reticulum (ER) strongly inhibited Ino-C2-PAF- and Glc-PAF-induced apoptosis. In conclusion, Ino-C2-PAF and Glc-PAF trigger a CD95/Fas ligand- and receptor-independent atypical DISC that relies on the intrinsic apoptotic pathway via the ER and the mitochondria.  相似文献   

7.
Apoptosis is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. In mammals, different complexes like the DISC complex or the apoptosome complexes have been delineated leading to the cleavage and thus activation of the executioner caspases. Although caspase-3 is the main executioner caspase in apoptosis induced by serum starvation in AKR-2B fibroblasts as demonstrated by affinity labeling with YVK(-bio)D.aomk and partial purification of cytosolic extracts by high performance ion exchange chromatography, its activation is apparently caused by a noncanonical pathway: (1) Expression of CrmA, an inhibitor of caspase-8, failed to suppress apoptosis; (2) There was no formation of high molecular weight complexes of Apaf-1 indicative for its activation. Furthermore no cleavage of caspase-9 was observed. But surprisingly, gelfiltration experiments revealed the distribution of caspase-3 and -6 into differently sized high molecular weight complexes during apoptosis. Though the apparent molecular weights of the complexes containing caspase-3 (600 kD for apoptosome and 250 kD for microapoptosome) are in accordance with recently published data, the activity profiles differ strikingly. In AKR-2B cells caspase-3 is mainly recovered as uncomplexed enzyme and in much lower levels in the apoptosomes. Remarkably, the 600 kD and 250 kD complexes containing activated caspase-3 were devoid of Apaf-1 and cytochrome c. In addition a new 450 kD complex containing activated caspase-6 was found that is clearly separated from the caspase-3 containing complexes. Furthermore, we disclose for the first time the activation of caspase-12 in response to serum starvation. Activated caspase-12 is detectable as non-complexed free enzyme in the cytosol.  相似文献   

8.
Caspase-8 is believed to play an obligatory role in apoptosis initiation by death receptors, but the role of its structural relative, caspase-10, remains controversial. Although earlier evidence implicated caspase-10 in apoptosis signaling by CD95L and Apo2L/TRAIL, recent studies indicated that these death receptor ligands recruit caspase-8 but not caspase-10 to their death-inducing signaling complex (DISC) even in presence of abundant caspase-10. We characterized a series of caspase-10-specific antibodies and found that certain commercially available antibodies cross-react with HSP60, shedding new light on previous results. The majority of 55 lung and breast carcinoma cell lines expressed mRNA for both caspase-8 and -10; however, immunoblot analysis revealed that caspase-10 protein expression was more frequently absent than that of caspase-8, suggesting a possible selective pressure against caspase-10 production in cancer cells. In nontransfected cells expressing both caspases, CD95L and Apo2L/TRAIL recruited endogenous caspase-10 as well as caspase-8 to their DISC, where both enzymes were proteolytically processed with similar kinetics. Caspase-10 recruitment required the adaptor FADD/Mort1, and caspase-10 cleavage in vitro required DISC assembly, consistent with the processing of an apoptosis initiator. Cells expressing only one of the caspases underwent ligand-induced apoptosis, indicating that each caspase can initiate apoptosis independently of the other. Thus, apoptosis signaling by death receptors involves not only caspase-8 but also caspase-10, and both caspases may have equally important roles in apoptosis initiation.  相似文献   

9.
During apoptosis, release of cytochrome c initiates dATP-dependent oligomerization of Apaf-1 and formation of the apoptosome. In a cell-free system, we have addressed the order in which apical and effector caspases, caspases-9 and -3, respectively, are recruited to, activated and retained within the apoptosome. We propose a multi-step process, whereby catalytically active processed or unprocessed caspase-9 initially binds the Apaf-1 apoptosome in cytochrome c/dATP-activated lysates and consequently recruits caspase-3 via an interaction between the active site cysteine (C287) in caspase-9 and a critical aspartate (D175) in caspase-3. We demonstrate that XIAP, an inhibitor-of-apoptosis protein, is normally present in high molecular weight complexes in unactivated cell lysates, but directly interacts with the apoptosome in cytochrome c/dATP-activated lysates. XIAP associates with oligomerized Apaf-1 and/or processed caspase-9 and influences the activation of caspase-3, but also binds activated caspase-3 produced within the apoptosome and sequesters it within the complex. Thus, XIAP may regulate cell death by inhibiting the activation of caspase-3 within the apoptosome and by preventing release of active caspase-3 from the complex.  相似文献   

10.
The apoptosome, a heptameric complex of Apaf-1, cytochrome c, and caspase-9, has been considered indispensable for the activation of caspase-9 during apoptosis. By using a large panel of genetically modified murine embryonic fibroblasts, we show here that, in response to tumor necrosis factor (TNF), caspase-8 cleaves and activates caspase-9 in an apoptosome-independent manner. Interestingly, caspase-8-cleaved caspase-9 induced lysosomal membrane permeabilization but failed to activate the effector caspases whereas apoptosome-dependent activation of caspase-9 could trigger both events. Consistent with the ability of TNF to activate the intrinsic apoptosis pathway and the caspase-9-dependent lysosomal cell death pathway in parallel, their individual inhibition conferred only a modest delay in TNF-induced cell death whereas simultaneous inhibition of both pathways was required to achieve protection comparable to that observed in caspase-9-deficient cells. Taken together, the findings indicate that caspase-9 plays a dual role in cell death signaling, as an activator of effector caspases and lysosomal membrane permeabilization.  相似文献   

11.
Apoptosis signaling pathways and lymphocyte homeostasis   总被引:3,自引:0,他引:3  
Xu G  Shi Y 《Cell research》2007,17(9):759-771
It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways ofapoptotic cell death induction: extrin- sic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.  相似文献   

12.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

13.
Previous results have shown that the oncoembryonic marker alpha-fetoprotein (AFP) is able to induce apoptosis in tumor cells through activation of caspase 3, bypassing Fas-dependent and tumor necrosis factor receptor-dependent signaling. In this study we further investigate the molecular interactions involved in the AFP-mediated signaling of apoptosis. We show that AFP treatment of tumor cells is accompanied by cytosolic translocation of mitochondrial cytochrome c. In a cell-free system, AFP mediates processing and activation of caspases 3 and 9 by synergistic enhancement of the low-dose cytochrome c-mediated signals. AFP was unable to regulate activity of caspase 3 in cell extracts depleted of cytochrome c or caspase 9. Using high-resolution chromatography, we show that AFP positively regulates cytochrome c/dATP-mediated apoptosome complex formation, enhances recruitment of caspases and Apaf-1 into the complex, and stimulates release of the active caspases 3 and 9 from the apoptosome. By using a direct protein-protein interaction assay, we show that pure human AFP almost completely disrupts the association between processed caspases 3 and 9 and the cellular inhibitor of apoptosis protein (cIAP-2), demonstrating its release from the complex. Our data suggest that AFP may regulate cell death by displacing cIAP-2 from the apoptosome, resulting in promotion of caspase 3 activation and its release from the complex.  相似文献   

14.

Background  

A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins.  相似文献   

15.
The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death‐inducing signaling complex (DISC). Activation of procaspase‐8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase‐8 preventing the association of caspase‐8 with the DISC. We identified FAT1 in a genome‐wide siRNA screen for synthetic lethal interactions with death receptor‐mediated apoptosis. Knockdown of FAT1 sensitized established and patient‐derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase‐8 recruitment to the DISC and increased formation of caspase‐8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9‐mediated genome engineering were more susceptible for death receptor‐mediated apoptosis. Our findings provide evidence for a mechanism to control caspase‐8‐dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.  相似文献   

16.
The CD95 (Fas/APO-1) death-inducing signaling complex (DISC) is essential for the initiation of CD95-mediated apoptotic and nonapoptotic responses. The CD95 DISC comprises CD95, FADD, procaspase-8, procaspase-10, and c-FLIP proteins. Procaspase-8 and procaspase-10 are activated at?the DISC, leading to the formation of active caspases and apoptosis initiation. In this study we analyzed the?stoichiometry of the CD95 DISC. Using quantitative western blots, mass spectrometry, and mathematical modeling, we reveal that the amount of DED proteins procaspase-8/procaspase-10 and c-FLIP at the DISC exceeds that of FADD by several-fold. Furthermore, our findings imply that procaspase-8, procaspase-10, and c-FLIP could form DED chains at the DISC, enabling the formation of dimers and efficient activation of caspase-8. Taken together, our findings provide an enhanced understanding of caspase-8 activation and initiation of apoptosis at the DISC.  相似文献   

17.
Apo cytochrome c inhibits caspases by preventing apoptosome formation   总被引:2,自引:0,他引:2  
Caspases are cysteine proteases and potent inducers of apoptosis. Their activation and activity is therefore tightly regulated. There are several mechanisms by which caspases can be activated but one key pathway involves release of holo cytochrome c from mitochondria into the cytoplasm. Cytoplasmic holo cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1), driving the formation of an Apaf-1 oligomer (the apoptosome) which in turn binds and activates caspase-9. Previously we showed that the apo form of cytochrome c (lacking heme) can bind Apaf-1 and block both holo-dependent caspase activation in cell extracts and Bax-induced apoptosis in cells. Here we tested the ability of apo cytochrome c to inhibit caspase-9 activation induced by recombinant Apaf-1. Furthermore, using purified proteins and size exclusion chromatography we show that apo cytochrome c prevents holo cytochrome c-dependent apoptosome formation.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors.  相似文献   

19.
Apaf-1, by binding to and activating caspase-9, plays a critical role in apoptosis. Oligomerization of Apaf-1, in the presence of dATP and cytochrome c, is required for the activation of caspase-9 and produces a caspase activating apoptosome complex. Reconstitution studies with recombinant proteins have indicated that the size of this complex is very large in the order of approximately 1.4 MDa. We now demonstrate that dATP activation of cell lysates results in the formation of two large Apaf-1-containing apoptosome complexes with M(r) values of approximately 1.4 MDa and approximately 700 kDa. Kinetic analysis demonstrates that in vitro the approximately 700-kDa complex is produced more rapidly than the approximately 1.4 MDa complex and exhibits a much greater ability to activate effector caspases. Significantly, in human tumor monocytic cells undergoing apoptosis after treatment with either etoposide or N-tosyl-l-phenylalanyl chloromethyl ketone (TPCK), the approximately 700-kDa Apaf-1 containing apoptosome complex was predominately formed. This complex processed effector caspases. Thus, the approximately 700-kDa complex appears to be the correctly formed and biologically active apoptosome complex, which is assembled during apoptosis.  相似文献   

20.
Ligation of death receptors or formation of the Apaf-1 apoptosome results in the activation of caspases and execution of apoptosis. We recently demonstrated that X-linked inhibitor-of-apoptosis protein (XIAP) associates with the apoptosome in vitro. By utilizing XIAP mutants, we now report that XIAP binds to the 'native' apoptosome complex via a specific interaction with the small p12 subunit of processed caspase-9. Indeed, we provide the first direct evidence that XIAP can simultaneously bind active caspases-9 and -3 within the same complex and that inhibition of caspase-3 by the Linker-BIR2 domain prevents disruption of BIR3-caspase-9 interactions. Recent studies suggest that inhibition of caspase-3 is dispensable for its anti-apoptotic effects. However, we clearly demonstrate that inhibition of caspase-3 is required to inhibit CD95 (Fas/Apo-1)-mediated apoptosis, whereas inhibition of either caspase-9 or caspase-3 prevents Bax-induced cell death. Finally, we illustrate for the first time that XIAP mutants, which are incapable of binding to caspases-9 and -3 are completely devoid of anti-apoptotic activity. Thus, XIAP's capacity to maintain inhibition of caspase-9 within the Apaf-1 apoptosome is influenced by its ability to simultaneously inhibit active caspase-3, and depending upon the apoptotic stimulus, inhibition of caspase-9 or 3 is essential for XIAP's anti-apoptotic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号