首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1. We show that elimination of the Mind bomb1 Interaction Domain (MID) or mutation of specific conserved motifs in this domain prevents effective Mib1-mediated ubiquitylation and internalization of DeltaD. Lateral inhibition mediated by Notch signaling regulates early neurogenesis in zebrafish. In this context, Notch activation suppresses neurogenesis, while loss of Notch-mediated lateral inhibition results in a neurogenic phenotype, where too many cells are allowed to become neurons. While Mib1-mediated endocytosis of DeltaD is essential for effective activation of Notch in a neighboring cell (in trans) it is not required for DeltaD to inhibit function of Notch receptors in the same cell (in cis). As a result, forms of DeltaD that have the MID can activate Notch in trans and suppress early neurogenesis when mRNA encoding it is ectopically expressed in zebrafish embryos. On the other hand, when the MID is eliminated/mutated in DeltaD, its ability to activate Notch in trans fails but ability to inhibit in cis is retained. As a result, ectopic expression of DeltaD lacking an effective MID results in a failure of Notch-mediated lateral inhibition and a neurogenic phenotype.  相似文献   

2.
The Delta-Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism essential for cell fate specification. Mind bomb 1 (Mib1) has been identified as a ubiquitin ligase that promotes the endocytosis of Delta. We now report that mice lacking Mib1 die prior to embryonic day 11.5, with pan-Notch defects in somitogenesis, neurogenesis, vasculogenesis and cardiogenesis. The Mib1-/- embryos exhibit reduced expression of Notch target genes Hes5, Hey1, Hey2 and Heyl, with the loss of N1icd generation. Interestingly, in the Mib1-/- mutants, Dll1 accumulated in the plasma membrane, while it was localized in the cytoplasm near the nucleus in the wild types, indicating that Mib1 is essential for the endocytosis of Notch ligand. In accordance with the pan-Notch defects in Mib1-/- embryos, Mib1 interacts with and regulates all of the Notch ligands, jagged 1 and jagged 2, as well as Dll1, Dll3 and Dll4. Our results show that Mib1 is an essential regulator, but not a potentiator, for generating functional Notch ligands to activate Notch signaling.  相似文献   

3.
Mind bomb (Mib) is an E3 ubiquitin ligase that activates the Notch signaling pathway. A previous study demonstrated that the generation of late-born GABAergic neurons may be regulated by the interplay between Mib and retinoic acid (RA). However, the relationship between Mib function and the retinoid pathway during the generation of late-born motor neurons remains unclear. We investigated the differentiation of neural progenitors into motor neurons by inhibition of Notch signaling and administration of RA to Tg[hsp70-Mib:EGFP] embryos. The number of motor neurons in the ventral spinal cord increased or decreased depending on the temporal inhibition of Mib-mediated Notch signaling. Inhibition of the retinoid pathway by citral treatment had a synergistic effect with overexpression of Mib:EGFP on the generation of ectopic motor neurons. Additionally, the proteolytic fragment of Mib was detected in differentiated P19 cells following treatment with RA. Our observations imply that the function of Mib may be attenuated by the retinoid pathway, and that Mib-mediated Notch signaling and the retinoid pathway play critical roles in the spatiotemporal differentiation of motor neurons.  相似文献   

4.
Jeong HW  Kim JH  Kim JY  Ha SJ  Kong YY 《PloS one》2012,7(4):e36359
In dendritic cell (DC)-CD4(+) T cell interaction, Notch signaling has been implicated in the CD4(+) T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1), a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+) T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+) T cells, suggesting that Notch activation in CD4(+) T cells is not required for these processes. Intriguingly, stimulation of CD4(+) T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+) T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+) T cells.  相似文献   

5.
Mib1 and Mib2 ubiquitin ligases are very similar in their domain construction. They partake in the Notch signaling pathway by ubiquitinating the Notch receptors Delta and Jagged prior to endocytosis. We have created a targeted mutation of Mib2 and show that its phenotype is a variable penetrance, failure to close the cranial neural tube. The penetrance depends on the genetic background but it appears that Mib2 is not completely essential in mouse development.  相似文献   

6.
Intraembryonic hematopoiesis occurs at two different sites, the floor of the aorta and subaortic patches (SAPs) of the para-aortic splanchnopleura (P-Sp)/aorta-gonad-mesonephros (AGM) region. Notch1 and RBP-jκ are critical for the specification of hematopoietic stem cells (HSCs) in Notch signal-receiving cells. However, the mechanism by which Notch signaling is triggered from the Notch signal-sending cells to support embryonic hematopoiesis remains to be determined. We previously reported that Mind bomb-1 (Mib1) regulates Notch ligands in the Notch signal-sending cells (B. K. Koo, M. J. Yoon, K. J. Yoon, S. K. Im, Y. Y. Kim, C. H. Kim, P. G. Suh, Y. N. Jan, and Y. Y. Kong, PLoS ONE 2:e1221, 2007). Here, we show that intraembryonic hematopoietic progenitors were absent in the P-Sp of Mib1−/− embryos, whereas they were partly preserved in the Tie2-cre; Mib1f/f P-Sps, suggesting that Mib1 plays a role in the endothelium and the SAPs. Interestingly, dll1 and dll4/Jag1 are expressed in the SAPs and the endothelium of the AGM, respectively, where mib1 is detected. Indeed, Notch signaling was activated in the nascent HSCs at both sites. In the P-Sp explant culture, the overexpression of Dll1 in OP9 stromal cells rescued the failed production of hematopoietic progenitors in the Mib1−/− P-Sp, while its activity was abolished by Mib1 knockdown. These results suggest that Mib1 is important for intraembryonic hematopoiesis not only in the aortic endothelium but also in the SAPs.  相似文献   

7.
Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.  相似文献   

8.
The Notch-Delta signaling pathway controls many conserved cell determination events. While the Notch end is fairly well characterized, the Delta end remains poorly understood. Mind bomb1 (MIB1) is one of two E3 ligases known to ubiquitinate Delta. We report here that a targeted mutation of Mib1 in mice results in embryonic lethality by E10.5. Mutants exhibit multiple defects due to their inability to modulate Notch signaling. As histopathology revealed a strong neurogenic phenotype, this study concentrates on characterizing the Mib1 mutant by analyzing Notch pathway components in embryonic neuroepithelium prior to developmental arrest. Premature neurons were observed to undergo apoptosis soon after differentiation. Aberrant neurogenesis is a direct consequence of lowered Hes1 and Hes5 expression resulting from the inability to generate Notch1 intracellular domain (NICD1). We conclude that MIB1 activity is required for S3 cleavage of the Notch1 receptor. These results have direct implications for manipulating the differentiation of neuronal stem cells and provide a putative target for the modulation of specific tumors.  相似文献   

9.
Notch signaling constitutes an evolutionarily conserved mechanism that mediates cell-cell interactions in various developmental processes. Numerous regulatory proteins interact with the Notch receptor and its ligands and control signaling at multiple levels. Ubiquitination and endocytosis followed by endosomal sorting of both the receptor and its ligands is essential for Notch-mediated signaling. The E3 ubiquitin ligases, Neuralized (Neur) and Mind Bomb (Mib1), are crucial for regulating the activity and stability of Notch ligands in Drosophila; however, biochemical evidence that the Notch ligands are directly targeted for ubiquitination by Neur and/or Mib1 has been lacking. In this report, we explore the function of Neurl1, a mouse ortholog of Drosophila Neur. We show that Neurl1 can function as an E3 ubiquitin ligase to activate monoubiquitination in vitro of Jagged1, but not other mammalian Notch ligands. Neurl1 expression decreases Jagged1 levels in cells and blocks signaling from Jagged1-expressing cells to neighboring Notch-expressing cells. We demonstrate that Neurl1 is myristoylated at its N terminus, and that myristoylation of Neurl1 targets it to the plasma membrane. Point mutations abolishing either Neurl1 myristoylation and plasma membrane localization or Neurl1 ubiquitin ligase activity impair its ability to down-regulate Jagged1 expression and to block signaling. Taken together, our results argue that Neurl1 at the plasma membrane can affect the signaling activity of Jagged1 by directly enhancing its ubiquitination and subsequent turnover.  相似文献   

10.
11.
The zebrafish gene, mind bomb (mib), encodes a protein that positively regulates of the Delta-mediated Notch signaling. It interacts with the intracellular domain of Delta to promote its ubiquitination and endocytosis. In our search for the mouse homologue of zebrafish mind bomb, we cloned two homologues in the mouse genome: a mouse orthologue (mouse mib1) and a paralogue, named mind bomb-2 (mib2), which is evolutionarily conserved from Drosophila to human. Both Mib1 and Mib2 have an E3 ubiquitin ligase activity in their C-terminal RING domain and interact with Xenopus Delta (XD) via their N-terminal region. Mib2 is also able to ligate ubiquitin to XD and shift the membrane localization of Delta to intracellular vesicles. Importantly, Mib2 rescues both the neuronal and vascular defects in the zebrafish mib(ta52b) mutants. In contrast to the functional similarities between Mib1 and Mib2, mib2 is highly expressed in adult tissues, but almost not at all in embryos, whereas mib1 is abundantly expressed in both embryos and adult tissues. These data suggest that Mib2 has functional similarities to Mib1, but might have distinct roles in Notch signaling as an E3 ubiquitin ligase.  相似文献   

12.
Koo BK  Yoon MJ  Yoon KJ  Im SK  Kim YY  Kim CH  Suh PG  Jan YN  Kong YY 《PloS one》2007,2(11):e1221

Background

The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.

Methodology/Principal Findings

Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2−/− mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.

Conclusions/Significance

Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.  相似文献   

13.
The broad diversity of neurons is vital to neuronal functions. During vertebrate development, the spinal cord is a site of sensory and motor tasks coordinated by interneurons and the ongoing neurogenesis. In the spinal cord, V2-interneuron (V2-IN) progenitors (p2) develop into excitatory V2a-INs and inhibitory V2b-INs. The balance of these two types of interneurons requires precise control in the number and timing of their production. Here, using zebrafish embryos with altered Notch signaling, we show that different combinations of Notch ligands and receptors regulate two functions: the maintenance of p2 progenitor cells and the V2a/V2b cell fate decision in V2-IN development. Two ligands, DeltaA and DeltaD, and three receptors, Notch1a, Notch1b, and Notch3 redundantly contribute to p2 progenitor maintenance. On the other hand, DeltaA, DeltaC, and Notch1a mainly contribute to the V2a/V2b cell fate determination. A ubiquitin ligase Mib, which activates Notch ligands, acts in both functions through its activation of DeltaA, DeltaC, and DeltaD. Moreover, p2 progenitor maintenance and V2a/V2b fate determination are not distinct temporal processes, but occur within the same time frame during development. In conclusion, V2-IN cell progenitor proliferation and V2a/V2b cell fate determination involve signaling through different sets of Notch ligand–receptor combinations that occur concurrently during development in zebrafish.  相似文献   

14.
Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.  相似文献   

15.
Both mind bomb (mib) and mind bomb-2 (mib2) encode RING E3 ubiquitin ligases that promote Delta ubiquitylation and endocytosis in Notch activation. Detailed morphological and molecular examinations revealed that zebrafish mib(ta52b) (missense mutation in the C-terminal RING Finger (RF), M1013R) and mib(m132) (nonsense mutation resulting in a truncated protein that loses all three RFs, C785stop) are strong and weak antimorphic alleles, respectively, compared to the null allele, mib(tfi91) (nonsense mutation resulting in a truncated protein of only 60 amino acids, Y60stop). Zebrafish mib2 ortholog was identified in this study. Zebrafish Mib and Mib2 are colocalized in transfected cells and function redundantly in regulating Notch signaling in embryos. Mib(ta52b) and Mib(m132) have a dosage-dependent dominant-negative effect, at least, on Mib2, which is a molecular basis for the antimorphic phenotypes. It was also shown that Notch signaling negatively regulates mib expression in a Su(H)-dependent manner, forming a negative feedback loop in modulating Notch activation.  相似文献   

16.
The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development.Mind bomb 1 (Mib1)1, an E3 ubiquitin ligase, is a critical regulator of metazoan development with a large, and ever expanding, number of functions through interactions with a variety of protein partners. Mib1 mutants were first found in zebrafish mutagenesis screens (1), in which the mutants had neurogenic defects, most notably supernumerary primary neurons, and additional deficits in the development of somites (2), ear (3), and vasculature (4). These phenotypes are predominantly the consequences of impaired Notch signaling, as Mib1 is an essential activator of Notch Delta/Serrate/lag-2 (DSL) ligands (1). Mib1 also controls the development of several other organ and tissue systems, including gastrointestinal tract (5), limb bud (6), and the immune system (7). Mib1 is highly conserved across species. For instance, zebrafish Mib1 protein is 68%, 94%, and 94% identical to its fly, mouse, and human orthologs, respectively (8). Moreover, Mib1 has a paralog (Mib2) that shares 38% identical protein sequence with Mib1 in mouse (9). Mib2 is only abundantly expressed in adult tissue, however, and thus does not function in early development. Consistently, Mib1 knockout in mice results in embryonic mortality (10), whereas Mib2 deletion has no obvious effect on mouse development (6).In addition to its role in cell fate determination during early development, Mib1 is also abundantly expressed in the adult brain (11) and plays an important role in neuronal morphogenesis (12). Neurons usually have two basic polarized structures, a single extended axon for sending signals and multiple branched dendrites (or more precisely, the somatodendritic compartment) for receiving signals. Many principle neurons in mammals further grow dendritic spines that are tiny protrusions extended from dendritic branches, creating local postsynaptic compartments for the formation of excitatory synapses. In these synapses, the postsynaptic density (PSD) is an electron-dense membrane thickening aligned with the presynaptic active zone at synaptic junctions. During neuronal morphogenesis, axonal growth and path finding (13), dendrite formation (14), dendritic spine assembly (15), and synaptogenesis (16) are independent but highly related processes controlled by genetic elements and environmental cues. Although dramatic progress has been made in identifying the signaling cascades responsible for these processes, large gaps still remain in the connection of individual signaling components as well as in the coordination of multiple pathways. Our previous proteomics analysis identified that Mib1 is highly enriched in the PSD fraction, and regulates neurite outgrowth in postmitotic neurons (12). Mib1 conditional knockout mouse studies suggest a role in long-term potentiation (LTP) and synaptic plasticity (11), and further intriguing actions of Mib1 continue to be discovered. Mib1 was found to mediate the degradation of survival motor neuron 1 (SMN1), which contributes to spinal muscular atrophy (17). Mib1 was reported to be essential for Wnt3A activation of beta-catenin signaling through the receptor RYK (18), and a recent yeast two-hybrid screen indicated that Mib1 interacts with 81 candidate proteins beyond the canonical Notch pathway (19). The ongoing identification of new Mib1 interaction partners and functions underscores the need to characterize the Mib1 interactome en masse with high confidence.The combination of affinity purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a powerful method for analyzing protein interaction networks. Technological advances in LC-MS/MS have continually increased the sensitivity of protein detection (20, 21), allowing for the analysis of complex samples (22). The primary advantage of this technique, however, has also proven to be its greatest weakness: without stringent washes and data filtering, a vast number of false positives are included in the resulting data sets (23). Methods such as tandem-affinity purification (24) have been developed to remove nonspecific contaminants, but two-step purification requires large quantities of starting materials and reduces sensitivity to loosely bound proteins. Removing contaminants by buffers containing high concentrations of salt and detergents can help limit false positives, but a delicate balance lies between rinsing contaminants and losing weakly bound but true interaction partners, and thus inflating false negative results. In addition, in vivo crosslinking and quantitative analysis are used to enhance the capture of transient interacting proteins (25, 26).To this end, we attempted to characterize the Mib1 interactome by combining glutathione S-transferase (GST) protein affinity purification and advanced quantitative mass spectrometry. In our sequential elution strategy, Mib1 interaction partners were bound to affinity resins coated with GST-Mib1 domains, then eluted in three sequential buffers of increasing stringency. Proteins in these three eluents were identified and quantified by an isobaric labeling Tandem Mass Tag (TMT) method (15). The elution profile of each protein reflected its binding affinity to the GST-Mib1 resins. The strategy not only provides high sensitivity to recover weakly bound partners, but also allows for the affinity-based classification of the interactome and the removal of contaminants. By this approach, we were able to recover 817 putative Mib1 binding partners in adult rat brain and accepted about half of the proteins with high confidence. This study also uncovered that Mib1 interacts with CDKL5, a protein kinase implicated in early infantile epileptic encephalopathy-2 (EIEE2), a severe form of epilepsy and mental retardation in females (28). We then found that Mib1 acts to down-regulate CDKL5 and inhibits its promotion of dendritic spine outgrowth.  相似文献   

17.
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.  相似文献   

18.

Objective

It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown.

Approaches and Results

We identified a number of novel proteins that physically interact with Mib, including the Factor Inhibiting Hypoxia Inducible Factor 1 (FIH-1, also known as HIF1AN) from a yeast two hybrid screen, as previously reported. In cultured cells, FIH-1 colocalizes with Mib1, corroborating their potential interaction. In zebrafish embryos, FIH-1 appears to modulate VEGF-A signaling activity; depletion of fih-1 induces ectopic expression of vascular endothelial growth factor–a (vegfa) and leads to exuberant ectopic sprouts from intersegmental vessels (ISVs). Conversely, over-expression of fih-1 substantially attenuates the formation of ISVs, which can be rescued by concurrent over-expression of vegfa, indicating that FIH-1/HIF1AN may fine tune VEGF-A signaling.

Conclusions

Taken together, our data suggest that FIH-1 interacts with Mib E3 Ubiquitin ligase and modulates vascular development by attenuating VEGF-A signaling activity.  相似文献   

19.
Roles of bHLH genes in neural stem cell differentiation   总被引:29,自引:0,他引:29  
Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement.  相似文献   

20.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号