首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf diffusion resistance interpreted as stomatal resistance,leaf water potential (w), solute potential (s) and leaf turgorpotential (p) of the chilling sensitive species Phaseolus vulgariswere determined during chilling at 4 °C in the light. Bothchill-hardened and non-hardened plants were used. For comparison,the chilling resistant species Pisum sativum was also used. The results for chilled P. sativum were similar to those obtainedfor chill-hardened P. vulgaris plants receiving a chilling treatment.In both cases a reduction in stomatal aperture and the maintenanceof a positive leaf turgor were the responses to chilling. Leavesof chilled but non-hardened P. vulgaris plants were found tomaintain open stomata throughout the chilling treatment despitea severe wilt developing after 7 h at 4 °C. This was incontrast to the chill-resistant P. sativum. which showed a rapidclosing and subsequent re-opening of the stomata to a new reducedaperture. During the first 12 h of chilling wof P. vulgaris leaves changedfrom –0.47 MPa to –1.24 MPa. On more prolonged chillingw tended to return to pre-chilling values. In addition. p decreasedfrom 0.42 MPa to zero after only 9 h of chilling, and remainedat this value for the remainder of the chilling period, s, changedrapidly from –0.89 MPa to –1.35 MPa in the first7.5 h, and after 9 h. w and s, were equal, i.e. zero p. In contrast,the chilling resistant plant P. sativum maintained a positivep throughout the chilling period, and there was little differencebetween values of w, and s in control and chilled leaves. Key words: Chilling, Stomata, ater relations, Phaseolus vulgaris, Pisum sativum  相似文献   

2.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

3.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

4.
Gas exchange in Clusia rosea has been measured under variousconditions of water status, light and leaf-air vapour pressuredeficit (w, mbar bar–1) which produce daytime (C3), night-time(CAM) or 24 h uptake of CO2. At high light levels, at a w of6.6, well-watered plants utilized C3 photosynthesis while CAMand 24 h uptake occurred under lower light levels and with lowto normal water availability and differing w (13.5 and 3.4,respectively). CO2 uptake was highest, stomatal conductanceto water vapour (gH2o) lowest, and water use efficiency (WUE)highest in plants using C3 photosynthesis. This latter factis contrary to the accepted view that CAM is most water useefficient, i.e. it optimizes CO2 uptake with minimal water loss.It is suggested that the low CO2 uptake in CAM photosynthesismay be related not only to the higher w but also to the factthat Clusia species accumulate citrate which may originate fromß-carboxylation of fatty acids (i.e. an internal sourceof CO2) and does not contribute to night-time external CO2 assimilation.Curves of assimilation (A) versus internal partial pressureof CO2 (A/c1) for the three photosynthetic types, under atmosphericconditions, did not produce a single trend. The trends whichwere produced represent the supply function for the interaction,under differing modes of photosynthesis, of the two major enzymesystems involved in CAM. Key words: Clusia rosea, Crassulacean acid metabolism, C3 photosynthesis, internal CO2 concentration, 24 h carbon dioxide uptake, water use efficiency.  相似文献   

5.
Owing to a typographical error three equations were omittedfrom page 1294. The correct paragraphs are set out below. The component K1 corrected for the difference in temperaturebetween the enzyme assay and the leaf and was calculated accordingto the Arrhemus equation. where v10 and v18 are the reaction velocities of carboxylationat 10?C and 18?C, respectively and A is the activation energy(A = 90 kJ mol–1, as determined for purified wheat RuBPCOby M?chler, Keys and Cornelius, 1980) The components K2 corrected for the difference in CO2 partialpressure between enzyme assay and leaf and for competitive inhibitionof carboxylation by O2 and was calculated according to the modifiedMichaelis Menten equation where vc, is the carboxylation velocity under leaf conditions,Vc. is the maximum carboxylation velocity as determined in theenzyme assay, Kc, and Ko are the Michaelis constants for carboxylationand oxygenation, respectively (Ko = 159 Pa CO2. Ko = 35.3 kPaO2, as interpolated for 18?C from spinach data as determinedby Jordan and Ogren, 1984), O is oxygen partial pressure inair and C1 is intercellular CO2 partial pressure in leaves (C1= 29.1 ? 0.8 Pa (? s c , n = 15)) The component K3 corrected for the decrease in CO2 fixationin leaves due to photorespiration and was calculated accordingto equation 3 Equation 3 is denved from the equation for the substrate specificityof RuBPCO, S= vc/voC (Laing, Ogren, and Hageman, 1974), andfrom the equation for the stoichiometry of photorespiratoryCO2 release, F=vc–1/2 vo, where vc, and vc are reactionvelocities of carboxylation and oxygenation, O and C are partialpressures of 02 and intercellular CO2, F is net photosynthesisand S is the substrate specificity of RuBPCO (S= 3061 Pa/Pa,as interpolated for 18?C from spinach data as determined byJordan and Ogren, 1984)  相似文献   

6.
The water potential () at which stomata completed closure (8Lmin)was determined for pearl millet (Pennisetum americanum [L.]Leeke) at two growth stages by monitoring changes in leaf conductance(gL) and following shoot detachment. Leaf water status wasevaluated concurrently using a pressure-volume (P-V) technique. In a pot experiment with young vegetative plants, 8Lmin closelyapproximated to the estimated at zero turgor (u) both for controland for drought-conditioned plants which had osmotically adjusted.However, for penultimate leaves of field-grown flowering plants,8Lmin was found to be 0.61 (irrigated plants) and 0.87 (droughtedplants) MPa below u. In drought-stressed field-grown plants,osmotic adjustment (characterized by a decrease in solute (osmotic)potential (s ) at both full hydration and zero turgor) was insufficientto maintain a positive bulk leaf turgor potential (p) once had declined to below about -1.5 MPa. It is suggested that localizedadjustment by the stomatal complex in response to environmentaldifferences, leaf ageing and/or ontogenetic change, is responsiblefor the uncoupling of stomatal from bulk leaf water status. Key words: Stomata, Water stress, Pennisetum americanum  相似文献   

7.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

8.
Thomas, H. 1987. Physiological responses to drought of Loliumperenne L.: Measurement of, and genetic variation in, waterpotential, solute potential, elasticity and cell hydration.—J.exp. Bot. 38: 115–125. Clonally-replicated genotypes of Loiium perenne L. were grownin a controlled environment. Leaf water potential (w) osmoticpotential (s), turgor potential (p = ws), elasticity(E), leaf hydration (g water per g dry matter, H) and numberof green leaves per tiller (NGL) were measured before and duringa 42 d drought treatment. A simplified method of estimating E (at w < 1?0 MPa) usingonly six measurements was developed to permit a measurementrate of 8 leaves per hour. Measurement errors in all characterswere 3% or less. During drought, w and s (at w = 0?5 MPa) decreased significantly,p and E increased significantly, and H decreased slightly. Plantsize during drought was negatively correlated with s, and Hand positively correlated with p, osmotic adjustment, E andNGL. Measurements made on the genotypes before draughting didnot give a reliable indication of their physiological conditionafter adaptation to drought. Genetically controlled variation (‘broad sense heritability’)of drought-adapted plants for E was 15%, w 23%, s, 34%, p, 35%,H 34% and NGL 64%. The possibilities for, and effectivenessof, divergent selection of genotypes with high and low expressionof the characters are discussed. Key words: Water relations, Lolium, genetic variation  相似文献   

9.
Du Cloux, H. C, André, M., Daguenet, A. and Massinuno,J. 1987. Wheat response to CO2 enrichment: Growth and CO2 exchangesat two plant densities.—J. exp. Bot. 38: 1421–1431. The vegetative growth of wheat (Triticum aestivum L., var. Capitole)was followed for almost 40 d after germination in controlledconditions. Four different treatments were carried out by combiningtwo air concentrations of CO2, either normal (330 mm3 dm 3)or doubled (660 mm3 dm 3) with two plant densities, either 200plants m 2 or 40 plants m 2. Throughout the experiment the CO2gas exchanges of each canopy were measured 24 h d1. These provideda continuous growth curve for each treatment, which were comparedwith dry weights. After a small stimulation at the start (first13 d), no further effect of CO2 enrichment was observed on relativegrowth rate (RGR). However, RGR was stimulated throughout theexperiment when plotted as a function of biomass. The finalstimulation ol dry weight at 660 mm3 dm 3 CO2 was a factor of1·45 at high density and 1·50 at low density,contrary to other studies, no diminution of this CO2 effecton dry weight was observed over time. Nevertheless, at low density,a transient additional enhancement of biomass (up to 1·70)was obtained at a leaf area index (LAI) below 1. This effectwas attributed to a different build up of the gain of carbonin the case of an isolated plant or a closed canopy. In theformer, the stimulation of leaf area and the net assimilationrate are both involved; in the latter the enhancement becomesindependent of the effect on leaf area because the canopy photosynthesisper unit ground area as a function of LAI reaches a plateau. Key words: Triticum aestuum, L. var. Capitole, Vegetative growth, Canopy  相似文献   

10.
Data from pressure-volume (PV) analysis may be submitted totransformation I [i.e. leaf water potential (1) versus inverserelative water content (1/R)] or to transformation II (i.e.1/1 versus R). This may cause an essential distortion of theerror structure especially in transformation II due to the relativelylarge range which is to be covered by the 1/1 ratio. Similarly,logarithmic transformation of leaf turgor potential (P) whenderiving the sensitivity factor of elasticity (ß)by linear regression from values of In p and 1/R may distortthe error structure. In order to investigate the magnitude ofthe distortion effect on parameters derived from PV analysisby regression a non-linear regression procedure was comparedwith the common linear procedure when calculating p from ßin the turgid region and leaf osmotic potential (P) in boththe turgid and non-turgid region. As test plants we used fieldgrown species of spring barley (Hordeum distichum L., cvs Gunnarand Alis). The results show that transformations and applicationof linear regression procedures distort the error structureof p more than the error structure of ', which was only slightlyaffected. However, we recommend the use of the non-linear procedurein both cases. Furthermore, from PV analysis, obtained by thermocouple hygrometryon living and killed leaf tissue, respectively, we derived themathematical basis for calculating the apoplastic water fraction(Ra). Ra was 0.15 at R= 1 and decreased with dehydration. The equations describing the relation between and R and betweenp and R were extended to take into account the apoplastic waterfraction. Key words: Apoplastic water, distortion errors, non-linear regression, pressure-volume curves  相似文献   

11.
Millhouse, J. and Strother, S. 1986. Salt-stimulated bicarbonate-dependentphotosynthesis in the marine angiosperm Zostera muelleri.—J.exp. Bot. 37: 965–976. Photosynthetic oxygen evolution in the seagrass Zostera muelleriIrmisch ex Aschers. was inhibited in iso-osmotic sucrose. Theapparent affinity of the leaves for CO2 in seawater increasesfrom pH 8?2 to 8?9 indicating that as well as CO2 may act as a substrate for photosynthesis. Theaffinity for CO2 was lower in iso-osmotic sucrose and was notaffected by pH. Under these conditions was not a substrate for photosynthesis. The differencebetween the photosynthetic rate in seawater and iso-osmoticsucrose at the same concentration of CO2 was used to estimate assimilation. The Briggs-Maskell equation, which allows for an unstirred layer around the tissuewas more appropriate than the Michaelis-Menten theory for calculatingthe apparent affinity of the leaf slices for CO2. The apparentKm CO2 was calculated as 116 mmol m–3 at pH 8?2 by Michaelis-Mentenkinetics but only 8?10 mmol m–3 by the Briggs-Maskellequation. The stimulation by various ions in Seawater of use was investigated. The cations,in decreasing order of effectiveness were Ca2+, Mg2+, K+ andNa+ Anions were ineffective. No single cation at its concentrationin seawater was capable of supporting use at the rate observed in seawater. Acetazolamide,an inhibitor of carbonic anhydrase, inhibited the use of for photosynthesis but had littleeffect on CO2 photosynthesis. Thus, carbonic anhydrase activityis required for -dependent photosynthesis. Key words: Zostera muelleri, photosynthesis, salinity  相似文献   

12.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

13.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

14.
Corrigendum     
Light response curves for (•) gross 16O2 evolution, and() CO2 uptake in 210 mmol mol–1 O2 with 900–1000µbar CO2 or () in air by leaves of Hirschfeldia incana.The difference between (•) and () or () was quantitativelyequivalent to the measured 18O2 uptake. The areas under thecurves are labelled to identify regions of assimilatory andnon-assimilatory electron flow redrawn from data of Canvin etal. (1980). It should be noted that the data and the labelling of the figureaxes are correct as printed.  相似文献   

15.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

16.
Calcification and photosynthetic rates in Halimeda tuna weremeasured by the 14C method under conditions of differing pHand total inorganic carbon (CO2) concentrations. The effectsof pH and CO2 on photosynthesis and respiration were also monitoredwith a polarographic O2 electrode. The results obtained indicatethat the intercellular pH and CO2 differ from those of the externalmedium. Experiments carried out over a range of pH values show thatHalimeda can use for photosynthesis. Photosynthesis appears to stimulate calcification by removing CO2 from theintercellular spaces. As these spaces are isolated from theexternal sea water by the layer of cell wall of the adpressedperipheral utricles, the removal of CO2 results in a rise in[] and a rise in pH. This results in an increased rate of CaCO3 precipitation. Respiratory CO2 evolution has aninhibitory effect on calcification by decreasing the pH and[]. A model for calcification in Halimeda is proposed based on theresults of this and previous papers. Calcification in Halimedais seen to be a result of the anatomy of the thallus in whichthe sites of calcification are within a semi-isolated chamberwhere removal or addition of CO2 due to photosynthesis or respirationcan effectively change [CO] thereby resulting in precipitation of CaCO3. In the Appendix to this paper theoreticalcalculations illustrate the effects of CO2, , and removal or addition in a closed system on the relative concentrations of the other inorganic carbonspecies.  相似文献   

17.
The effect of Chromium VI on leaf water potential (w), solutepotential (a), turgor potential (p) and relative water content(RWC) of primary and first trifoliatc leaves of Phaseolus vulgarisL. was studied under normal growth conditions and during anartificially induced water stress period in order to establishthe possible influence of this heavy metal on the water stressresistance of plants. Plants were grown on perlite with nutrientsolution containing 0, 1•0, 2•5, 5•0 or 10•0µg cm–3 Cr as Na2Cr2O7.2H2O. The effect of Cr onwater relations was highly concentration dependent, and primaryand first trifoliate leaves were affected differently. The growthreducing concentrations of Cr (2•5, 5•0 and 10•0µg cm–3) generally decreased s and w and increasedp in primary leaves. The 1•0 µg cm–3 Cr treatmentdid not affect growth, but altered water relations substantially:in primary leaves w and p were increased and s decreased, whilein trifoliate leaves the effect was the opposite. All Cr treatedplants resisted water stress for longer than control plants.The higher water stress resistance may be due to the lower sand to the increased cell wall elasticity observed in Cr VItreated plants. Key words: Phaseolus vulgaris, Chromium VI, water stress, Richter plot  相似文献   

18.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

19.
Water Relations of Tropical Epiphytes: II. PERFORMANCE DURING DROUGHTING   总被引:2,自引:0,他引:2  
Relative water content R, water potential and leaf diffusiveconductance C5 were monitored while five tropical epiphyteswere subjected to an extended period of drought. The speciesstudied were: ferns Pyrrosia adnascens (Forst.) Ching and Pyrrosiaangustata (Sw.) Ching, family Polypodiaceae; orchids: Eria velutinaLindl., Dendrobium tortile Lindl. and Dendrobium crumenatumSw. The ferns reached zero turgor rapidly and after only small declinesin relative water content (R) and . Beyond this point stomatalmovement seemed strongly suppressed, but the leaves continuedto lose water vapour until very low values of R were reached.Nevertheless, on re-watering water potential (), R and diffusiveconductance (C5) returned to pre-stress levels within 3 d. The orchids showed a more gradual decline in R and , stomatalactivity was not so strongly suppressed, and night opening ofstomata was observed under stress. The relationship between and R was found for each species,curves being fitted to the data points by non-linear regression.From these analyses it was concluded that these species hadvery dilute cell sap, and consequently the change in for agiven decline in R was smaller than for most other species recordedin the literature. Key words: Orchid, Fern, Drought, Relative water content, Diffusive conductance, Water potential  相似文献   

20.
The rate of net CO2 fixation in Lemna gibba L. was decreasedto 50% by 100–150 min incubation in the presence of 0•5mol m–3 L-methionine-D,L-Sulphoximine (MSO), an irreversibleinhibitor of glutasnine synthetase (GS). The pattern of inhibitionwas similar in both 21% O2 and 2% O2. The inhibition was accompaniedby increased intracellular levels. Incubation with 10 mol m–3 under the same conditions, but without MSO, resulted in even higher levels but the rate of CO2 fixation was unaffected. Additions of glutamine, glutamate, glycine or serine delayedthe MSO-induced inhibition of CO2 fixation. The same amino acidsdelayed the inactivation of GS by MSO. Thus inhibition of CO2 fixation by MSO in Lemna is neither causedby elevated levels nor closely related to photorespiration. Possibly, MSO causes shortage of amino-N formaintenance of the functional integrity of the photosyntheticapparatus. Key words: Methionine sulphoximine, CO2, fixation, Lemna  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号