首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Vancomycin intermediate Staphylococcus aureus (VISA) strains are increasingly prevalent in the hospital setting, and are of major concern in the treatment of methicillin-resistant S. aureus infections. Multiple mutations in vancomycin-susceptible S. aureus (VSSA) strains likely led to the emergence of VISA, and point mutations in the agr, orf1, yvqF, vraSR, graSR, and tcaRAB genes of VISA strains have been shown to contribute to glycopeptide resistance. Therefore, we investigated point mutations in these genes from 87 VISA and 27 VSSA clinical strains isolated from Korean hospitals. All strains were assigned an agr type (I, II, or III) on the basis of multiplex PCR, with the majority of VISA strains belonging to agr groups I and II. Sequencing revealed amino acid changes in vraS from VISA strains which were not present in the VSSA strains. The E59D substitution in the vraR gene occurred in 36.3% of VSSA/agrI and 92.7% of VISA/agrI strains, suggesting that this mutation associated with emergence of VISA/agrI strains. VISA strains were classified into 31 mutation patterns according to mutations in the yvqF, vraSR, graSR, and tcaRAB genes. In addition, the mutation patterns were correlated with agr and sequence type (ST). The most prevalent pattern included agr type I (ST 72) strains with E59D (vraR), L26F and T224I (graS), D148Q (graR), and L218P, R283H and G312D (tcaA) amino acid substitutions. The minimum inhibitory concentration (MIC) range of mutation pattern 5 toward oxacillin and imipenem was much lower than that of patterns 6 and 24. These results improve our understanding of emergence of VISA strains.  相似文献   

3.
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system.  相似文献   

4.
Vancomycin is the mainstay of treatment for patients with Staphylococcus aureus infections, and reduced susceptibility to vancomycin is becoming increasingly common. Accordingly, the development of rapid and accurate assays for the diagnosis of vancomycin-intermediate S. aureus (VISA) will be critical. We developed and applied a genome-based machine-learning approach for discrimination between VISA and vancomycin-susceptible S. aureus (VSSA) using 25 whole-genome sequences. The resulting machine-learning model, based on 14 gene parameters, including 3 molecular typing markers and 11 genes implicated in reduced vancomycin susceptibility, is able to unambiguously distinguish between the VISA and VSSA isolates analyzed here despite the fact that they do not form evolutionarily distinct groups. As such, the model is able to discriminate based on specific genomic markers of antibiotic susceptibility rather than overall sequence relatedness. Subsequent evaluation of the model using leave-one-out validation yielded a classification accuracy of 84%. The machine-learning approach described here provides a generalized framework for the application of genome sequence analysis to the classification of bacteria that differ with respect to clinically relevant phenotypes and should be particularly useful in defining the genomic features that underlie antibiotic resistance.  相似文献   

5.

Background

Despite hVISA infections being associated with vancomycin treatment failure, no previous study has been able to detect a mortality difference between heteroresistant vancomycin intermediate Staphylococcus aureus (hVISA) and vancomycin susceptible Staphylococcus aureus (VSSA) bloodstream infections (BSI).

Methodology

Consecutive methicillin-resistant S. aureus (MRSA) BSI episodes between 1996 and 2008 were reviewed. Patient demographics, clinical presentation, treatment and overall mortality at 30 days were extracted from the medical records. All isolates underwent vancomycin minimum inhibitory concentration (VMIC) testing by broth microdilution and Etest. hVISA was confirmed by population analysis profiling using the area under the curve method (PAP-AUC).

Principal Findings

401 evaluable MRSA BSI episodes were identified over the 12 years. Of these, 46 (11.5%) and 2 (0.5%) were confirmed as hVISA and VISA by PAP-AUC respectively. hVISA predominantly occurred in ST239-like MRSA isolates with high VMIC (2 mg/L). Compared to VSSA, hVISA was associated with chronic renal failure (p<0.001), device related infections (haemodialysis access) (p<0.001) and previous vancomycin usage (p = 0.004). On multivariate analysis, independent predictors of mortality included age, presence of multiple co-morbidities, principal diagnosis, transit to ICU and severity of illness while infection related surgery and hVISA phenotype were associated with increased survival.

Conclusions/Significance

The presence of hVISA is dependent on the appropriate interplay between host and pathogen factors. hVISA in ST239 MRSA is an independent predictor of survival. Whether these findings would be replicated across all MRSA clones is unknown and warrants further study.  相似文献   

6.
Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF.  相似文献   

7.
Staphylococcus aureus is the leading cause of many human infectious diseases. Besides infectious dangers, S. aureus is well-known for the quickly developed drug resistance. Although great efforts have been made, mechanisms underlying the antibiotic effects of S. aureus are still not well clarified. Recently, reports have shown that oxidative stress connects with bactericidal antibiotics [Dwyer et al. (2009) Curr. Opin. Microbiol. 12, 482–489]. Based on this point, we demonstrate that reactive oxygen species (ROS) induced by sublethal vancomycin may be partly responsible for the antibiotic resistance in heterogeneous vancomycin resistant S. aureus (hVRSA). Sublethal vancomycin treatment may induce protective ROS productions in hVRSA, whereas reduction in ROS level in hVRSA strains may increase their vancomycin susceptibility. Moreover, low dose of ROS in VSSA (vancomycin susceptible S. aureus) strains may promote their survival under vancomycin conditions. Our findings reveal that modest ROS generation may be protective for vancomycin resistance in hVRSA. These results recover novel insights into the relationship between oxidative stress and bacterial resistance, which has important applications for further use of antibiotics and development of therapeutics strategies for hVRSA.  相似文献   

8.
万古霉素敏感性下降的金黄色葡萄球菌(VISA/hV ISA)日益增多,已经成为公共健康的重要威胁。来自临床或实验室的VISA/hV ISA菌株表现出一些共同特征,如细胞壁增厚,自溶活性降低,毒力减弱,醋酸盐代谢异常。金葡菌从VSSA到VISA/hV ISA的转化是一个逐步演变的过程,VISA中一些调控基因的变异,特别是如wal KR、graRS、vra SR、rpo B、rpo C、rpo D、agr、msrR、fdh2、sle1等基因连续的变异与金葡菌对万古霉素的耐药性相关。VISA/hV ISA中相应基因的变异也是VISA/hV ISA对宿主毒力减弱,持续定殖及对宿主适应性改变的遗传基础。为了预防和控制VISA/hI VSA感染,应全面了解其生物学特性,开发简便有效的检验方法,探索制定灵活的治疗策略,达到有效防治的目的。  相似文献   

9.
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from l-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.  相似文献   

10.

Background

Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus.

Methods

Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates.

Results

On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol.

Conclusion

Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus.  相似文献   

11.
The objective of the present work was to observe and profile various antibiotic resistant strains of Staphylococcus aureus and highlight the need for continuous surveillance. Data regarding antibiotic-resistant S. aureus strains isolated and identified at the Medical Microbiology Department, King Khalid Hospital, Riyadh was obtained. Bacterial isolates were collected from several sites of infections in patients and an evaluation of susceptibility were carried out using a fully automated Vitek2 system. Relative frequency (%), odds ratios and Ward's minimum variance were calculated. The results showed that wounds were a source of more than 40% of the S. aureus (MRSA) strains that have ability to resist methicillin, and more than 45% of the methicillin-susceptible S. aureus (non-MRSA) strains. 40% of the isolates were MRSA (N = 251), and all MRSA strains were sensitive to vancomycin, daptomycin, teicoplanin, tigecycline, nitrofurantoin, and itraconazole while all non-MRSA (N = 338) strains were sensitive to vancomycin, cefoxitin, daptomycin, gentamicin, oxacillin, teicoplanin, tigecycline, and mupirocin. Strength of association between antibiotic-resistant S. aureus strains and source of samples (site of infection) was established. The study concluded that S. aureus strains had developed resistance towards 20 (for non-MRSA) and 22 (for MRSA) of the antibiotics tested. All MRSA strains were non-sensitive to amoxicillin/clavulanate, ampicillin cefoxitin, cefazolin, imipenem, oxacillin, and penicillin.  相似文献   

12.
13.
Staphylococcus aureus oxiva 10 and oxiva 14 strains clinically isolated from diabetic patients were resistant to gentamycin and oxacillin The minimal inhibitory concentrations (MICs) of oxacillin and gentamycin were 720 and >2048 μg/mL, respectively, for oxiva 10 and 680 and 400 μg/mL. respectively, for oxiva 14; both strains carry mecA and femA genetic determinants in their genomes. In addition, both are vancomycin-intermediate Staphylococcus aureus (VISA) isolates. The addition of vancomycin led to significant decreases in oxacillin resistance of both oxiva 10 and oxiva 14 strains, whereas the addition of vancomycin to gentamycin plates showed a decrease in gentamycin resistance of non-high-level gentamycin-resistant (non-HLGR) oxiva 14 and indifference in gentamycin resistance in HLGR oxiva 10. Transmission electron microscopy of representative strains unveils a remarkable increase in the thickness of the cell wall, indicating that thickening of the cell wall is a common phenotype associated with vancomycin resistance in VISA isolates. The present study reports that the rate of synergism and synergistic effect in the combination vancomycin–gentamycin vary according to the MICs of gentamycin.  相似文献   

14.
15.
Staphylococcus capitis is a member of the human and mammal skin microbiomes and is considered less harmful than Staphylococcus aureus. S. capitis subsp. urealyticus BN2 was isolated from a cat and expressed strong antibacterial activity against a range of Gram-positive species, most notably including S. aureus strains with resistance to methicillin (MRSA) and strains with intermediate resistance to vancomycin (VISA). These latter strains are normally relatively resistant to bacteriocins, due to cell wall and cell membrane modifications. Genomic sequencing showed that the strain harboured at least two complete gene clusters for biosynthesis of antagonistic substances. The complete biosynthetic gene cluster of the well-known lantibiotic gallidermin was encoded on a large plasmid and the mature peptide was present in isopropanol cell extracts. In addition, a chromosomal island contained a novel non-ribosomal peptide synthetase (NRPS) gene cluster. Accidental deletion of two NRPS modules and partial purification of the anti-VISA activity showed that this novel bacteriocin represents a complex of differently decorated, non-ribosomal peptides. Additionally, a number of phenol-soluble modulins (PSMs) was detected by mass spectrometry of whole cells. Producing these compounds, the strain was able to outcompete several S. aureus strains, including MRSA and VISA, in tube cultures.  相似文献   

16.
Pseudomonas aeruginosa is a leading pathogen that has become increasingly resistant to the fluoroquinolone antibiotics due to widespread prescribing. Adverse outcomes have been shown for patients infected with fluoroquinolone-resistant strains. The type III secretion system (TTSS) is a major virulence determinant during acute infections through the injection of effector toxins into host cells. Most strains exhibit a unique TTSS virulence genotype defined by the presence of either exoS or exoU gene encoding two of the effector toxins, ExoS and ExoU, respectively. Specific TTSS effector genotype has been shown previously to differentially impact virulence in pneumonia. In this study, we examined the relationship between TTSS effector genotype and fluoroquinolone resistance mechanisms in a collection of 270 respiratory isolates. We found that a higher proportion of exoU+ strains were fluoroquinolone-resistant compared to exoS+ strains (63% vs 49%, p = 0.03) despite its lower overall prevalence (38% exoU+ vs 56% exoS+). Results from sequencing the quinolone resistance determining regions (QRDRs) of the 4 target genes (gyrA, gyrB, parC, parE) indicated that strains containing the exoU gene were more likely to acquire ≥2 mutations than exoS+ strains at MICs ≤8 µg/ml (13% vs none) and twice as likely to have mutations in both gyrA and parC than exoS+ strains (48% vs 24% p = 0.0439). Our findings indicate that P. aeruginosa strains differentially develop resistance-conferring mutations that correlate with TTSS effector genotype and the more virulent exoU+ subpopulation. Differences in mutational processes by virulence genotype that were observed suggest co-evolution of resistance and virulence traits favoring a more virulent genotype in the quinolone-rich clinical environment.  相似文献   

17.

Background

Vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) are associated with vancomycin treatment failure, and are becoming an increasing public health problem. Therefore, we undertook this study of 91 published studies and made subgroup comparisons of hVISA/VISA incidence in different study years, locations, and types of clinical samples. We also analyzed the genetic backgrounds of these strains.

Methods

A systematic literature review of relevant articles published in PubMed and EMBASE from January 1997 to August 2014 was conducted. We selected and assessed journal articles reporting the prevalence rates of hVISA/VISA.

Results

The pooled prevalence of hVISA was 6.05% in 99,042 methicillin-resistant S. aureus (MRSA) strains and that of VISA was 3.01% in 68,792 MRSA strains. The prevalence of hVISA was 4.68% before 2006, 5.38% in 2006–2009, and 7.01% in 2010–2014. VISA prevalence was 2.05%, 2.63%, and 7.93%, respectively. In a subgroup analysis of different isolation locations, the prevalence of hVISA strains was 6.81% in Asia and 5.60% in Europe/America, and that of VISA was 3.42% and 2.75%, respectively. The frequencies of hVISA isolated from blood culture samples and from all clinical samples were 9.81% and 4.68%, respectively, and those of VISA were 2.00% and 3.07%, respectively. The most prevalent genotype was staphylococcal cassette chromosome mec (SCCmec) II, which accounted for 48.16% and 37.74% of hVISA and VISA, respectively. Sequence Type (ST) 239 was most prevalent.

Conclusion

The prevalence of hVISA/VISA has been increasing in recent years, but has been grossly underestimated. Its incidence is higher in Asia than in Europe/America. hVISA is isolated from blood culture samples more often than from other samples. These strains are highly prevalent in epidemic MRSA strains. This study clarifies the epidemiology of hVISA/VISA and indicates that the detection of these strains and the control of nosocomial infections must be strengthened.  相似文献   

18.
The regulation of murein hydrolases is a critical aspect of peptidoglycan growth and metabolism. In the present study, we demonstrate that mutations within the Staphylococcus aureus virulence factor regulatory genes, agr and sar, affect autolysis, resulting in decreased and increased autolysis rates, respectively. Zymographic analyses of these mutant strains suggest that agr and sar exert their effects on autolysis, in part, by modulating murein hydrolase expression and/or activity.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

20.
Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号