首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The nagE operon, encoding the enzyme II specific for N-acetylglucosamine (EIINag), and adjacent DNA from the chromosome of Klebsiella pneumoniae were sequenced and compared with the corresponding sequence from Escherichia colt K12. The deduced EIINag sequences differ in 72 out of 651 amino acids, the K. pneumoniae sequence being three residues longer. The amino acid differences were distributed unevenly, and were most frequent in regions connecting the three functional domains of the protein. In the nagE-nagB intergenic region, two promoter, two operator, and one CAP consensus sequence with regulatory functions were highly conserved. The nag structural genes from both species were very similar (83% DNA similarity; 89% amino acid similarity) except for frequent AT to GC exchanges in the wobble base of codons in K. pneumoniae DNA relative to the E. coli DNA.  相似文献   

2.
Klebsiella pneumoniae, which produces PQQ and is available for use with a conventional expression vector system, was selected as the host strain for soluble PQQ glucose dehydrogenase (PQQGDH-B) production. The recombinant K. pneumoniaeexpressed PQQGDH-B in its holo-form at about 18000 U l–1, equal to that achieved in recombinant Escherichia coli. The signal sequence of recombinant PQQGDH-B produced by K. pneumoniaewas correctly processed. K. pneumoniaecan become an alternative host microorganism not only for PQQGDH-B production but also for recombinant PQQ enzymes production.  相似文献   

3.
Summary In two previous reports (Narhi LO, Fulco AJ, J. Biol. Chem. 261: 7160–7169, 1986; Ibid., 262: 6683–6690, 1987) we described the characterization of a catalytically self-sufficient 119000-dalton P-450 cytochrome that was induced by barbiturates in Bacillus megaterium. In the presence of NADPH and O2, this polypeptide (cytochrome P-450BM-3) catalyzed the hydroxylation of long-chain fatty acids without the aid of any other protein. The gene encoding this unique monooxygenase was cloned into Escherichia coli and the clone harboring the recombinant plasmid produced a protein that behaved electrophoretically and immunochemically like the B. megaterium enzyme (Wen LP, Fulco AJ, J. Biol. Chem. 262: 6676–6682, 1987). We have now compared authentic P-450BM-3 from B. megaterium and putative P-450BM-3 isolated from transformed E. coli and have found them to be indistinguishable with respect to chromatographic and electrophoretic behavior, reaction with specific antibody, prosthetic group (heme, FAD and FMN) analyses, spectra, enzymology, limited trypsin proteolysis and partial amino acid sequencing. We thus conclude that the P-450 cytochrome expressed by the transformed E. coli is essentially identical to native P-450BM-3 induced by barbiturates in B. megaterium. The evidence furthermore suggests that the primary amino acid sequence of this complex protein is alone sufficient to direct the proper integration of the three prosthetic groups and to specify folding of the polypeptide into the correct tertiary structure.Abbreviations SDS Sodium Dodecylsulfate - PAGE Polyacrylamide Gel Electrophoresis - HPLC High Performance Liquid Chromatography  相似文献   

4.
Summary Recombinant DNA plasmids containing inserts from the glnA region of Escherichia coli were used to study the expression of gln, hut, and nif operons in a regulation defective mutant (GlnHutNif) of Klebsiella pneumoniae, KP5060. Genes adjacent to the C-terminal end of glnA on the E. coli chromosome were able to derepress hut and nif operons in K. pneumoniae in the absence of glnA product. However, complete derepression of nif operons required inclusion of the segment adjacent to the N-terminal end of the glnA region of the E. coli chromosome along with the C-terminal end segment. In the absence of functional glnA, such a fully derepressed strain expressed nif and hut constitutively indicating a role for the catalytic activity of glutamine synthetase in repression of the genes under nitrogen control.  相似文献   

5.
UnlikeEscherichia coli, the closely related bacteriumSalmonella typhimurium is relatively unresponsive to the mutagenic effects of DNA-damaging agents. Previous experiments have suggested that these phenotypic differences might result from reduced activity of theS. typhimurium UmuC protein. To investigate this possibility, we have taken advantage of the high degree of homology between the UmuC proteins ofE. coli andS. typhimurium and have constructed a series of plasmid-encoded chimeric proteins. The possibility that the phenotypic differences might be due to differential expression of the respective UmuC proteins was eliminated by constructing chimeric proteins that retained the first 25 N-terminal amino acids of either of the UmuC proteins (and presumably the same translational signals), but substituting the remaining 397 C-terminal amino acids with the corresponding segments from the reciprocal operon. Constructs expressing mostlyE. coli UmuC were moderately proficient for mutagenesis whereas those expressing mostlyS. typhimurium UmuC exhibited much lower frequencies of mutation, indicating that the activity of the UmuC protein ofS. typhimurium is indeed curtailed. The regions responsible for this phenotype were more precisely localized by introducing smaller segments of theS. typhimurium UmuC protein into the UmuC protein ofE. coli. While some regions could be interchanged with few or no phenotypic effects, substitution of residues 212–395 and 396–422 ofE. coli UmuC with those fromS. typhimurium resulted in reduced mutability, while substitution of residues 26–59 caused a dramatic loss of activity. We suggest, therefore, that the primary cause for the poor mutability ofS. typhimurium can be attributed to mutations located within residues 26–59 of theS. typhimurium UmuC protein.  相似文献   

6.
A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 gene (pfkA) was constructed, and transferred into Acidithiobacillus thiooxidans Tt-7 by conjugation. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (18 U g–1) was lower than that in E. coli (K12: 86 U g–1; DF1010 carrying plasmid pSDK-1: 97 U g–1). In the presence of glucose, the Tt-7 transconjugant consumed glucose leading to a better growth yield.  相似文献   

7.
The maltoporin LamB of Escherichia coli K12 is a trimeric protein which facilitates the diffusion of maltose and maltodextrins through the bacterial outer membrane, and also acts as a non-specific porin for small hydrophilic molecules as well as a receptor for phages. Loop L9 (residues 375 to 405) is the most distal and largest surface-exposed loop of LamB. It comprises a central portion, which varies in size and sequence in the maltoporins of known sequence, flanked by two conserved regions containing charged and aromatic residues. In order to identify the residues within the proximal region that are specifically involved in sugar utilization, we used site-directed mutagenesis to change, individually, each of the charged (five) and aromatic (three) residues in the region 371 to 379 into alanine. None of the eight single amino acid substitutions affected the phage receptor activity of LamB. In contrast, they all affected, to variable extents, maltoporin functions. For all the mutants, very good correlations were observed between the effects on sugar binding and on in vivo uptake. In no case were maltoporin functions completely abolished. Mutants E374 A and W376 A were the most impaired (with over 60% reduction in dextrin binding and in vivo uptake of maltose and maltopentaose). These two mutations also led to an increased bacterial sensitivity to bacitracin and vancomycin. The functional and structural implications are discussed. Received: 29 April 1998 / Accepted: 23 July 1998  相似文献   

8.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

9.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

10.
The frxC gene, one of the unidentified open reading frames present in liverwort chloroplast DNA, shows significant homology with the nifH genes coding for the Fe protein, a component of the nitrogenase complex (Ohyama et al., 1986, Nature 322: 572–574). A truncated form of the frxC gene was designed to be over-expressed in Escherichia coli and an antibody against this protein was prepared using the purified product as an antigen. This antibody reacted with a protein in the soluble fraction of liverwort chloroplasts, which had an apparent molecular weight of 31 000, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in good agreement with a putative molecular weight of 31945 deduced from the DNA sequence of the frxC gene. In a competitive inhibition experiment, the antigenicity of this protein was indicated to be similar to that of the over-expressed protein in E. coli. Therefore, we concluded that the frxC gene was expressed in liverwort chloroplasts and that its product existed in a soluble form. The molecular weight of the frxC protein was approximately 67 000, as estimated by gel filtration chromatography, indicating that the frxC protein may exist as a dimer of two identical polypeptides analogous to the Fe protein of nitrogenase. The results obtained from affinity chromatography supported the possibility that the frxC protein, which possesses a ATP-binding sequence in its N-terminal region that is conserved among various other ATP-binding proteins, has the ability to bind ATP.  相似文献   

11.
Optimized procedures for producing biologically active chemokines   总被引:1,自引:1,他引:0  
We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6×His-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni–NTA–agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6×His-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni–NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.  相似文献   

12.
Summary The amino acid sequences of the protonmotive cytochromeb from seven representative and phylogenetically diverse species have been compared to identify protein regions or segments that are conserved during evolution. The sequences analyzed included both prokaryotic and eukaryotic examples as well as mitochondrial cytochromeb and chloroplastb 6 proteins. The principal conclusion from these analyses is that there are five protein regions-each comprising about 20 amino acid residues—that are consistently conserved during evolution. These domains are evident despite the low density of invariant residues. The two most highly conserved regions, spanning approximately consensus residues 130–150 and 270–290, are located in extramembrane loops and are hypothesized to constitute part of the Qo reaction center. The intramembrane, hydrophobic protein regions containing the heme-ligating histidines are also conserved during evolution. It was found, however, that the conservation of the protein segments extramembrane to the histidine residues ligating the low potential b566 heme group showed a higher degree of sequence conservation. The location of these conserved regions suggests that these extramembrane segments are also involved in forming the Qo reaction center. A protein segment putatively constituting a portion of the Qi reaction center, located approximately in the region spanned by consensus residues 20–40, is conserved in species as divergent as mouse andRhodobacter. This region of the protein shows substantially less sequence conservation in the chloroplast cytochromeb 6. The catalytic role of these conserved regions is strongly supported by locations of residues that are altered in mutants resistant to inhibitors of cytochromeb electron transport.  相似文献   

13.
Glucose-stat and pH-stat control strategies were employed in order to culture a recombinant E. coli XL1 Blue to produce a fusion protein of sweet potato sporamin (SPA) and glutathione S-transferase (GST) from the recombinant E. coli XL1 Blue. Cell densities up to 25 g l–1 and 28.9 mg fusion protein (GST-SPA) g–1 cell dry weight (CDW) was achieved from a fed-batch fermentation controlled by glucose-stat strategy. A pH-stat control fermentation using glycerol as a carbon source gave E. coli up to 27 g l–1 and 31.5 mg GST-SPA g–1 CDW. Additionally, a pH-stat control strategy using glucose as a carbon source gave E. coli up to 15 g l–1 and about 22.7 mg g–1 CDW of GST-SPA.  相似文献   

14.
A cDNA clone coding for mature C. reinhardtii ferredoxin has been isolated from a cDNA library using PCR and two oligonucleotide primers based on the N- and C-termini of the protein's amino acid sequence. The nucleotidic sequence of the PCR fragment (299 bp) agreed well with the amino acid sequence since a single conservative substitution (Thr-7 to Ser) could be deduced. The PCR fragment was inserted into the expression vector pTrc 99A, using the incorporated NcoI and BamHI restriction sites and the construction used to transform E. coli (DH5α F′). After subsequent large scale expression and purification of the recombinant protein, biochemical and biophysical analysis have indicated that the product isolated from E. coli is homologous to native ferredoxin isolated from green algae.  相似文献   

15.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

16.
A gene encoding attacin E, an inducible antibacterial protein from Hyalophora cecropia pupae, was cloned into the pRSETB Escherichia coli expression vector under the control of the T7 promoter. The resulting vector, pRSETBAtt, produced a fusion protein in E. coli JM109 of attacin with an N-terminal peptide containing six histidine residues in tandem. Fusion attacin was purified from cell lysates (6–9 mg l–1) by Ni2+-Sepharose affinity chromatography. Purified attacin protein was used as antigen to produce polyclonal antibody to detect attacin expressed in transgenic apple. Antibody capture immunoassay and immunoblot assays indicated that polyclonal antisera derived from fusion attacin had specific immunoreaction against attacins in the hemolymph of immunized pupae and attacin expressed in transgenic apple lines similar to native attacin antisera. Attacin expressed in transgenic apple could be quantified using immunoblot assays with the fusion attacin polyclonal antibody.  相似文献   

17.
Yeast (CUP1) and mammalian (HMT-1A) metallothioneins (MTs) have been efficiently expressed in Escherichia coli as fusions to the outer membrane protein LamB. A 65-amino-acid sequence from the CUP1 protein of Saccharomyces cerevisiae (yeast [Y] MT) was genetically inserted in permissive site 153 of the LamB sequence, which faces the outer medium. A second LamB fusion at position 153 was created with 66 amino acids recruited from the form of human (H) MT that is predominant in the adipose tissue, HMT-1A. Both LamB153-YMT and LamB153-HMT hybrids were produced in vivo as full-length proteins, without any indication of instability or proteolytic degradation. Each of the two fusion proteins was functional as the port of entry of lambda phage variants, suggesting maintenance of the overall topology of the wild-type LamB. Expression of the hybrid proteins in vivo multiplied the natural ability of E. coli cells to bind Cd2+ 15- to 20-fold, in good correlation with the number of metal-binding centers contributed by the MT moiety of the fusions.  相似文献   

18.
P64k is a Neisseria meningitidis high molecular weight protein present in meningococcal vaccine preparations. The lpdA gene, codifying for this protein, was cloned in Escherichia coli and the P64k protein was expressed in Escherichia coli K12 W3110 under the control of the tryptophan promoter. The recombinant bacteria were grown in batch or fed-batch cultures. P64k was expressed as an intracellular soluble form at about 40% of the total cellular protein. A final productivity of 215 mg l–1 h–1 and 11 g cell dry wt l–1 were obtained when the fed-batch culture conditions were optimised, compared to 30% of total protein, and a productivity of 76 mg l–1 h–1 and 5.1 g cell dry wt l–1 in batch cultivation.  相似文献   

19.
A gene encoding glutamate racemase (GluRA) was found in a thermophilic Bacillus strain named SK-1. The gene was cloned and expressed in Escherichia coli WM335, a -glutamate auxotroph. It consists of 792 bp with a start codon, TTG. The amino acid sequence deduced from the gene indicates that the GluRA has two cysteines and their surrounding regions are well conserved. The GluRA produced in the recombinant E. coli was purified to homogeneity by heat-treatment and Resource Q and Phenyl sepharose column chromatographies. The enzyme, which was determined to be a monomeric protein with a molecular weight of 29,000, did not require a cofactor such as pyridoxal 5′-phosphate, nicotinamide, or flavin for its activity. The enzyme was stable after incubation at 55 °C and retained 60% of its original activity after incubation at 60 °C. It was found to be stable in the region of pH 6.0–11.5. The thermostable GluRA was used as a catalyst in a multi-enzyme system composed of four enzyme reactions for the production of -phenylalanine. By running the multi-enzyme system for 35 h, 58 g l−1 of -phenylalanine was produced with 100% of optical purity from equimolar amount of phenylpyruvate.  相似文献   

20.
Summary A series of mutants was isolated in Klebsiella pneumoniae strain 1033, among them mutants unable to grown on l-sorbose. Different R' plasmids carrying the sor genes and other surrounding chromosomal genes were also isolated. Each plasmid contained the structural genes sorA for an Enzyme II of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system, sorD for a d-glucitol 6-phosphate dehydrogenase, sorE for an l-sorbose 1-phosphate reductase, and the corresponding regulator gene sorR. These structural genes are coordinately expressed and inducible by l-sorbose. Cis-dominant and pleiotropic mutations rendering the expression of the sor genes constitutive or eliminating it were isolated. Complementation of a series of mutations in Escherichia coli K12 and K. pneumoniae by various R' and F' plasmids and by P1 transduction in K. pneumoniae located the sor genes within the following gene sequence: rbs rha pfkA metB ppc argH ilv btuB rpoB metA ace sor pgi malB uvrA. The rbs-ilv gene loci tightly linked in E. coli K12 at 84 min, are separated in the map of K. pneumoniae 1033 and located at 86 and 89 min, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号