首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
  • Hybridization is a widespread phenomenon present in numerous lineages across the tree of life. Its evolutionary consequences range from effects on the origin and maintenance, to the loss of biodiversity.
  • We studied genetic diversity and intra‐ and interspecific gene flow between two sympatric populations of closely‐related species, Pitcairnia flammea and P. corcovadensis (Bromeliaceae), which are adapted to naturally fragmented Neotropical inselbergs, based on nuclear and plastidial DNA.
  • Our main results indicate a strong reproductive isolation barrier, although low levels of interspecific gene flow were observed in both sympatric populations. The low rates of intraspecific gene flow observed for both P. corcovadensis and P. flammea populations corroborate the increasing body of evidence that inselberg bromeliad species are maintained as discrete evolutionary units despite the presence of low genetic connectivity. Nuclear patterns of genetic diversity and gene flow revealed that hybridization and introgression might not cause species extinction via genetic assimilation of the rare P. corcovadensis.
  • In the face of reduced intraspecific gene exchange, hybridization and introgression may be important aspects of the Pitcairnia diversification process, with a positive evolutionary impact at the bromeliad community level, and thus contribute to increasing and maintaining genetic diversity in local isolated inselberg populations.
  相似文献   

2.
Schiedea (Caryophyllaceae) is a monophyletic genus of 34 species, all endemic to the Hawaiian Islands, that arose from a single colonization, providing one of the best examples of adaptive radiation in Hawai'i. Species utilize a range of habitats and exhibit a variety of growth forms and transitions in breeding systems from hermaphroditism toward dimorphism or autogamy. Our study included the most thorough sampling to date: 2-5 individuals per species and 4 independent genetic partitions: eight plastid and three low-copy nuclear loci (9217bps), allowing a three-locus BEST species tree. Despite incomplete resolution at the tips, our results support monophyly for each extant species. Gene trees revealed several clear cases of cytonuclear incongruence, likely created by interspecific introgression. Conflict occurs at the divergence of section Alphaschiedea as well as at the tips. Ages inferred from a BEAST analysis allow an original colonization onto either Nihoa or Kauaì and inform some aspects of inter-island migrations. We suggest that several hard polytomies on the species tree are biologically realistic, signifying either nearly simultaneous speciation or historical introgressive hybridization. Based on inferred node ages that exceed expected coalescent times, we propose that undetected nuclear introgression may play a larger role than incomplete lineage sorting in sections Schiedea and Mononeura.  相似文献   

3.
Aim Many tropical tree species have poorly delimited taxonomic boundaries and contain undescribed or cryptic species. We examined the genetic structure of a species complex in the tree genus Carapa in the Neotropics in order to evaluate age, geographic patterns of diversity and evolutionary relationships, and to quantify levels of introgression among currently recognized species. Location Lowland moist forests in the Guiana Shield, the Central and Western Amazon Basin, Chocó and Central America. Methods Genetic structure was analysed using seven nuclear simple sequence repeats (nuSSR), five chloroplast SSRs (cpSSR), and two chloroplast DNA (cpDNA) intergenic sequences (trnH–psbA and trnC–ycf6). Bayesian clustering analysis of the SSR data was used to infer population genetic structure and to assign 324 samples to their most likely genetic cluster. Bayesian coalescence analyses were performed on the two cpDNA markers to estimate evolutionary relationships and divergence times. Results Two genetic clusters (nu_guianensis and nu_surinamensis) were detected, which correspond to the Neotropical species C. guianensis (sensu latu) and C. surinamensis. Fourteen cpDNA haplotypes clustered into six haplogroups distributed between the two nuclear genetic clusters. Divergence between the haplogroups was initiated in the Miocene, with some haplotype structure evolving as recently as the Pleistocene. The absence of complete lineage sorting between the nuclear and chloroplast genomes and the presence of hybrid individuals suggest that interspecific reproductive barriers are incomplete. NuSSR diversity was highest in C. guianensis and, within C. guianensis, cpDNA diversity was highest in the Central and Western Amazon Basin. Regional genetic differentiation was strong but did not conform to an isolation‐by‐distance process or exhibit a phylogeographical signal. Main conclusions The biogeographical history of Neotropical Carapa appears to have been influenced by events that took place during the Neogene. Our results point to an Amazonian centre of origin and diversification of Neotropical Carapa, with subsequent migration to the Pacific coast of South America and Central America. Gene flow apparently occurs among species, and introgression events are supported by inconsistencies between chloroplast and nuclear lineage sorting. The absence of phylogeographical structure may be a result of the ineffectiveness of geographical barriers among populations and of reproductive isolation mechanisms among incipient and cryptic species in this species complex.  相似文献   

4.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

5.
The geographic ranges of rhesus ( Macaca mulatta ) and cynomolgus ( M. fascicularis ) macaques adjoin in Indochina where they appear to hybridize. We used published and newly generated DNA sequences from 19 loci spanning ~20 kb to test whether introgression has occurred between these macaque species. We studied introgression at the level of nuclear DNA and distinguished between incomplete lineage sorting of ancestral polymorphisms or interspecific gene flow. We implemented a divergence population genetics approach by fitting our data to an isolation model implemented in the software IMa. The model that posits no gene flow from the rhesus into the cynomolgus macaque was rejected ( P  = 1.99 × 10−8). Gene flow in this direction was estimated as 2 Nm ~1.2, while gene flow in the reverse direction was nonsignificantly different from zero ( P  = 0.16). The divergence time between species was estimated as ~1.3 million years. Balancing selection, a special case of incomplete sorting, was taken into consideration, as well as potential crossbreeding in captivity. Parameter estimates varied between analyses of subsets of data, although we still rejected isolation models. Geographic sampling of the data, where samples of cynomolgus macaques derived from Indochina were excluded, revealed a lost signature of gene flow, indicating that interspecific gene flow is restricted to mainland Indochina. Our results, in conjunction with those by others, justify future detailed analyses into the genetics of reproductive barriers and reticulate evolution in these two genome-enabled primates. Future studies of the natural hybridization between rhesus and cynomolgus macaques would expand the repertoire of systems available for speciation studies in primates.  相似文献   

6.
Mitonuclear discordance is a frequently encountered pattern in phylogeographic studies and occurs when mitochondrial and nuclear DNA display conflicting signals. Discordance among these genetic markers can be caused by several factors including confounded taxonomies, gene flow, and incomplete lineage sorting. In this study, we present a strong case of mitonuclear discordance in a species complex of toads (Bufonidae: Incilius coccifer complex) found in the Chortís Block of Central America. To determine the cause of mitonuclear discordance in this complex, we used spatially explicit genetic data to test species limits and relationships, characterize demographic history, and quantify gene flow. We found extensive mitonuclear discordance among the three recognized species within this group, especially in populations within the Chortís Highlands of Honduras. Our data reveal nuclear introgression within the Chortís Highlands populations that was most probably driven by cyclical range expansions due to climatic fluctuations. Though we determined introgression occurred within the nuclear genome, our data suggest that it is not the key factor in driving mitonuclear discordance in the entire species complex. Rather, due to a lack of discernible geographic pattern between mitochondrial and nuclear DNA, as well as a relatively recent divergence time of this complex, we concluded that mitonuclear discordance has been caused by incomplete lineage sorting. Our study provides a framework to test sources of mitonuclear discordance and highlights the importance of using multiple marker types to test species boundaries in cryptic species.  相似文献   

7.
In this study, we verified the power of DNA barcodes to discriminate Neotropical birds using Bayesian tree reconstructions of a total of 7404 COI sequences from 1521 species, including 55 Brazilian species with no previous barcode data. We found that 10.4% of species were nonmonophyletic, most likely due to inaccurate taxonomy, incomplete lineage sorting or hybridization. At least 0.5% of the sequences (2.5% of the sampled species) retrieved from GenBank were associated with database errors (poor‐quality sequences, NuMTs, misidentification or unnoticed hybridization). Paraphyletic species (5.8% of the total) can be related to rapid speciation events leading to nonreciprocal monophyly between recently diverged sister species, or to absence of synapomorphies in the small COI region analysed. We also performed two series of genetic distance calculations under the K2P model for intraspecific and interspecific comparisons: the first included all COI sequences, and the second included only monophyletic taxa observed in the Bayesian trees. As expected, the mean and median pairwise distances were smaller for intraspecific than for interspecific comparisons. However, there was no precise ‘barcode gap’, which was shown to be larger in the monophyletic taxon data set than for the data from all species, as expected. Our results indicated that although database errors may explain some of the difficulties in the species discrimination of Neotropical birds, distance‐based barcode assignment may also be compromised because of the high diversity of bird species and more complex speciation events in the Neotropics.  相似文献   

8.
Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.  相似文献   

9.
Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200,000 and 300,000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions.  相似文献   

10.
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister‐species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site‐associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister‐species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174–0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.  相似文献   

11.
Heliconius butterflies have become a model for the study of speciation with gene flow. For adaptive introgression to take place, there must be incomplete barriers to gene exchange that allow interspecific hybridization and multiple generations of backcrossing. The recent publication of estimates of individual components of reproductive isolation between several species of butterflies in the Heliconius melpomeneH. cydno clade allowed us to calculate total reproductive isolation estimates for these species. According to these estimates, the butterflies are not as promiscuous as has been implied. Differences between species are maintained by intrinsic mechanisms, while reproductive isolation of geographical races within species is mainly due to allopatry. We discuss the implications of this strong isolation for basic aspects of the hybrid speciation with introgression hypothesis.  相似文献   

12.
The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution.  相似文献   

13.
The study of recently formed species is important because it can help us to better understand organismal divergence and the speciation process. However, these species often present difficult challenges in the field of molecular phylogenetics because the processes that drive molecular divergence can lag behind phenotypic divergence. In the current study we show that species of the recently diverged North American endemic genus of purple coneflower, Echinacea, have low levels of molecular divergence. Data from three nuclear loci and two plastid loci provide neither resolved topologies nor congruent hypotheses about species-level relationships. This lack of phylogenetic resolution is likely due to the combined effects of incomplete lineage sorting, hybridization, and backcrossing following secondary contact. The poor resolution provided by molecular markers contrasts previous studies that found well-resolved and taxonomically supported relationships from metabolic and morphological data. These results suggest that phenotypic canalization, resulting in identifiable morphological species, has occurred rapidly within Echinacea. Conversely, molecular signals have been distorted by gene flow and incomplete lineage sorting. Here we explore the impact of natural history on the genetic organization and phylogenetic relationships of Echinacea.  相似文献   

14.
Shibataea is a genus of temperate bamboos(Poaceae:Bambusoideae)endemic to China,but little is known about its phylogenetic position and interspecific relationships.To elucidate the phylogenetic relationship of the bamboo genus Shibataea,we performed genome-scale phylogenetic analysis of all seven species and one variety of the genus using double digest restriction-site associated DNA sequencing(dd RAD-seq)and whole plastid genomes generated using genome skimming.Our phylogenomic analyses based on dd RAD-seq and plastome data congruently recovered Shibataea as monophyletic.The nuclear data resolved S.hispida as the earliest diverged species,followed by S.chinensis,while the rest of Shibataea can be further divided into two clades.However,the plastid and nuclear topologies conflict significantly.By comparing the results of network analysis and topologies reconstructed from different datasets,we identify S.kumasasa as the most admixed species,which may be caused by incomplete lineage sorting(ILS)or interspecific gene flow with four sympatric species.This study highlights the power of dd RAD and plastome data in resolving complex relationships in the intractable bamboo genus.  相似文献   

15.
Short divergence times and processes such as incomplete lineage sorting and species hybridization are known to hinder the inference of species-level phylogenies due to the lack of sufficient informative genetic variation or the presence of shared but incongruent polymorphism among taxa. Extant equids (horses, zebras, and asses) are an example of a recently evolved group of mammals with an unresolved phylogeny, despite a large number of molecular studies. Previous surveys have proposed trees with rather poorly supported nodes, and the bias caused by genetic introgression or ancestral polymorphism has not been assessed. Here we studied the phylogenetic relationships of all extant species of Equidae by analyzing 22 partial mitochondrial and nuclear genes using maximum likelihood and Bayesian inferences that account for heterogeneous gene histories. We also examined genetic signatures of lineage sorting and/or genetic introgression in zebras by evaluating patterns of intraspecific genetic variation. Our study improved the resolution and support of the Equus phylogeny and in particular the controversial positions of the African wild ass (E. asinus) and mountain zebra (E. zebra): the African wild ass is placed as a sister species of the Asiatic asses and the mountain zebra as the sister taxon of Grevy's and Burchell's zebras. A shared polymorphism (indel) detected among zebra species in the Estrogen receptor 1 gene was likely due to incomplete lineage sorting and not genetic introgression as also indicated by other mitochondrial (Cytochrome b) and nuclear (Y chromosome and microsatellites) markers. Ancestral polymorphism in equids might have contributed to the long-standing lack of clarity in the phylogeny of this highly threatened group of mammals.  相似文献   

16.
Interspecific hybridization is widespread among plants. Understanding the phylogenetic relationships among species is necessary for revealing the potential hybridization events. Actinidia, best known as kiwifruit genus found throughout a wide range in eastern Asian from Indonesia to Siberia. In this study, phylogenetic relationships of Actinidia species with sympatric distributions were investigated using three chloroplast introns (trnL-F, atpB-rbcL and rpl32-trnL) and three Exon primed intron-crossing (EPIC) markers. Chloroplast phylogeny supports non-monophyly of the five species studied excluding Actinidia fulvicoma var. lanata. The non-monophyly was also revealed by EPIC markers. Our results showed EPIC markers are more variable and informative for phylogenetic inference than that of chloroplast markers. The incongruences between loci from the plastid and nuclear DNA phylogenic trees may stem from incomplete lineage sorting or historical introgression hybridization. Incomplete lineage sorting may explain the non-monophyly between Actinidia chrysantha (section Maculatae) and other four species (section Stellatae), and introgression hybridization and high level of interspecific gene flow may explain the non-monophyly among the species of sect. Stellatae. Thus, natural hybridization and introgression may be common in Actinidia with sympatric distribution.  相似文献   

17.
Discordance between the mitochondrial and nuclear genomes is a prevalent phenomenon in nature, in which the underlying processes responsible are considered to be important in shaping genetic variation in natural populations. Among the evolutionary processes that best explain such genomic mismatches incomplete lineage sorting and introgression are commonly identified, however, many studies are unable to distinguish between these hypotheses, which has become a major challenge in the field. In this issue of Molecular Ecology, Firneno et al. (2020) present an elegant exploration of mitochondrial‐nuclear discordance in Mesoamerican toads. Integrating genome‐scale and spatial data to test between these hypotheses within an empirical model testing framework, they find strong support that incomplete lineage sorting explains the observed discordance. Their work, along with many previous articles in Molecular Ecology, highlights the commonality of mito‐nuclear discordance among species despite the expectations of tightly concerted mitochondrial and nuclear genome evolution. It is increasingly clear that the nuclear genomes of many species are (at least for short periods of evolutionary time) functionally compatible with multiple, divergent mitochondrial haplotypes. As such, we suggest future research not only seeks to understand the processes causing spatial mito‐nuclear discordance (e.g. incomplete lineage sorting, introgression), but also explores those that maintain discordance through time and space (e.g. relaxed selection on mito‐nuclear interactions, heterozygosity, population demographics). We also discuss the vital role that taxonomy plays in interpreting patterns of mito‐nuclear discordance when data‐consistent yet differing taxonomies are used, such as treating allopatrically distributed taxa as multiple isolated populations versus multiple micro‐endemic species.  相似文献   

18.
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.  相似文献   

19.
The simultaneous analysis of intra‐ and interspecies variation is challenging mainly because our knowledge about patterns of polymorphisms where both intra‐ and interspecies samples coexist is limited. In this study, we present CoMuS (Coalescent of Multiple Species), a multispecies coalescent software that can simulate intra‐ and interspecies polymorphisms. CoMuS supports a variety of speciation models and demographic scenarios related to the history of each species. In CoMuS, speciation can be accompanied by either instant or gradual isolation between sister species. Sampling may also occur in the past, and thus, we can study simultaneously extinct and extant species. Our software supports both the infinite‐ and the finite‐site model, with substitution rate heterogeneity among sites and a user‐defined proportion of invariable sites. We demonstrate the usage of CoMuS in various applications: species delimitation, software testing, model selection and parameter inference involving present‐day and ancestral samples, comparison between gradual and instantaneous isolation models, estimation of speciation time between human and chimpanzee using both intra‐ and interspecies variation. We expect that CoMuS will be particularly useful for studies where species have been separated recently from their common ancestor and phenomena such as incomplete lineage sorting or introgression still occur.  相似文献   

20.
While reinforcement may play a role in all major modes of speciation, relatively little is known about the timescale over which species hybridize without evolving complete reproductive isolation. Birds have high potential for hybridization, and islands provide simple settings for uncovering speciation and hybridization patterns. Here we develop a phylogenetic hypothesis for a phenotypically diverse radiation of finch-like weaver-birds (Foudia) endemic to the western Indian Ocean islands. We find that unlike Darwin's finches, each island-endemic Foudia population is a monophyletic entity for which speciation can be considered complete. In explaining the only exceptions-mismatches between taxonomy, mitochondrial, and nuclear data-phylogenetic and coalescent methods support introgressive hybridization rather than incomplete lineage sorting. Human introductions of known timing of one island-endemic species, to all surrounding archipelagos provide two fortuitous experiments; (1) population sampling at known times in recent evolutionary history, (2) bringing allopatric lineages of an island radiation into secondary contact. Our results put a minimum time bound on introgression (235 years), and support hybridization between species in natural close contact (parapatry), but not between those in natural allopatry brought into contact by human introduction. Time in allopatry, rather than in sympatry, appears key in the reproductive isolation of Foudia species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号