首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study, we investigated the molecular mechanisms of toxicity of 1-methyl-4-phenylpyridinium (MPP(+)), an ultimate toxic metabolite of a mitochondrial neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, that causes Parkinson-like symptoms in experimental animals and humans. We used rat cerebellar granule neurons as a model cell system for investigating MPP(+) toxicity. Results show that MPP(+) treatment resulted in the generation of reactive oxygen species from inhibition of complex I of the mitochondrial respiratory chain, and inactivation of aconitase. This, in turn, stimulated transferrin receptor (TfR)-dependent iron signaling via activation of the iron-regulatory protein/iron-responsive element interaction. MPP(+) caused a time-dependent depletion of tetrahydrobiopterin (BH(4)) that was mediated by H(2)O(2) and transferrin iron. Depletion of BH(4) decreased the active, dimeric form of neuronal nitric-oxide synthase (nNOS). MPP(+)-mediated "uncoupling" of nNOS decreased *NO and increased superoxide formation. Pretreatment of cells with sepiapterin to promote BH(4) biosynthesis or cell-permeable iron chelator and TfR antibody to prevent iron-catalyzed BH(4) decomposition inhibited MPP(+) cytotoxicity. Preincubation of cerebellar granule neurons with nNOS inhibitor exacerbated MPP(+)-induced iron uptake, BH(4) depletion, proteasomal inactivation, and apoptosis. We conclude that MPP(+)-dependent aconitase inactivation, Tf-iron uptake, and oxidant generation result in the depletion of intracellular BH(4), leading to the uncoupling of nNOS activity. This further exacerbates reactive oxygen species-mediated oxidative damage and apoptosis. Implications of these results in unraveling the molecular mechanisms of neurodegenerative diseases (Parkinson's and Alzheimer's disease) are discussed.  相似文献   

2.
In the past, investigators have successfully used iron chelators to mitigate the cardiotoxicity of doxorubicin (DOX), a widely used anticancer drug that induces reactive oxygen species (ROS), oxidative damage, and apoptosis. Although intracellular iron plays a critical role in initiating DOX-induced apoptosis, the molecular mechanism(s) that link iron, ROS, and apoptosis are still unknown. In this study, we demonstrate that apoptosis results from the exposure of bovine aortic endothelial cells to DOX and that the apoptotic cell death is accompanied by a significant increase in cellular iron ((55)Fe) uptake and activation of iron regulatory protein-1. Furthermore, DOX-induced iron uptake was shown to be mediated by the transferrin receptor (TfR)-dependent mechanism. Treatment with the anti-TfR antibody (IgA class) dramatically inhibited DOX-induced apoptosis, iron uptake, and intracellular oxidant formation as measured by fluorescence using dichlorodihydrofluorescein. Treatment with cell-permeable iron chelators and ROS scavengers inhibited DOX-induced cellular (55)Fe uptake, ROS formation, and apoptosis. Based on these findings, we conclude that DOX-induced iron signaling is regulated by the cell surface TfR expression, intracellular oxidant levels, and iron regulatory proteins. The implications of TfR-dependent iron transport in oxidant-induced apoptosis in endothelial cells are discussed.  相似文献   

3.
Inhibition of astrocytic apoptosis has been regarded as a novel prospective strategy for treating neurodegenerative disorders such as Parkinson's disease. In the present study, we demonstrated that iptakalim (IPT), an ATP-sensitive potassium channel (K(ATP) channel) opener, exerted protective effect on MPP(+)-induced astrocytic apoptosis, which was reversed by selective mitochondrial K(ATP) channel blocker 5-hydroxydecanoate. Further study revealed that IPT inhibited glutathione (GSH) depletion, mitochondrial membrane potential loss and subsequent release of pro-apoptotic factors (cytochrome c and apoptosis-inducing factor (AIF), and c-Jun NH(2)-terminal kinase/mitogen-activated protein kinases (MAPK) phosphorylation induced by MPP(+). Meanwhile, extracellular signal-regulated kinase (ERK) 1/2 inhibitor PD98059 inhibited the protective effect of IPT on MPP(+)-induced astrocytic apoptosis. Furthermore, IPT could also activate ERK/MAPK and maintain increased phospho-ERK1/2 level after MPP(+) exposure. Taken together, these findings reveal for the first time that IPT protects against MPP(+)-induced astrocytic apoptosis via inhibition of mitochondria apoptotic pathway and regulating the MAPK signal transduction pathways by opening mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels in astrocytes. And targeting K(ATP) channels expressed in astrocytes may provide a novel therapeutic strategy for neurodegenerative disorders.  相似文献   

4.
Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.  相似文献   

5.
1-Methyl-4-phenylpyridinium ion (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome characterized by elevation of intracellular reactive oxygen species level and apoptotic death. Adiponectin, secreted from adipose tissue, mediates systemic insulin sensitivity with liver and muscle as target organs. Adiponectin can also suppress superoxide generation in endothelial cells. In the present study, we investigated the protective effects of adiponectin on MPP+-induced cytotoxicity in human neuroblastoma SH-SY5Y cells, as well as the underlying mechanism. Our results suggest that the protective effects of adiponectin on MPP+-induced apoptosis may be ascribed to its anti-oxidative properties, anti-apoptotic activity via inducing expression of SOD and catalase, and regulation of Bcl-2 and Bax expression. These data indicated that adiponectin might provide a useful therapeutic strategy for the treatment of progressive neurodegenerative diseases such as Parkinson's disease.  相似文献   

6.
MPTP (1-methyl-1,2,3,6-tetrahydropyridine), a chemical contaminant of synthetic heroin, induces neuropathological changes with clinical features similar to idiopathic Parkinson's disease. The mechanism by which MPTP and its metabolite MPP(+)(1-methyl-4-phenylpyridinium) induces neuronal cell death remains unclear. We employed primary cortical/telencephalon neuronal cultures to investigate the potential role of caspase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) pathways in MPP(+)-induced neuronal death. DNA fragmentation and caspase-3 activity analysis showed that cortical neuronal cells underwent apoptosis after MPP(+)treatment. However, a basal level of apoptotic cells was also observed in untreated cultures. Interestingly, JNK activity increased in untreated cultures over time, whereas it was down-regulated after MPP(+)treatment. This indicates that the JNK pathways could be differentially regulated in different apoptotic processes.  相似文献   

7.
Fibrillization and aggregation of alpha-synuclein may play a critical role in neurodegenerative diseases like Parkinson's diseases. Adeno-associated virus (AAV) vector delivery of an alpha-synuclein ribozyme was tested for its silencing effect on degenerating nigrostriatal neurons in the MPP(+) model of Parkinson's disease. We designed alpha-synuclein ribozyme against human alpha-synuclein gene expression and constructed alpha-synuclein ribozymes-carrying rAAV vector (designated rAAV-SynRz). Co-transfection of rAAV-SynRz and rAAV-alpha-synuclein into HEK293 cells resulted in down-regulation of alpha-synuclein protein expression in vitro. Then, rAAV-SynRz was injected into the substantia nigra (SN) of MPP(+)-treated rats. Cell counts of TH-positive neurons in the SN revealed that rAAV-SynRz significantly protected TH-positive cells against apoptotic death, compared with those of rAAV-EGFP or no rAAV injected rats. Our results indicate that the use of rAAV-SynRz allowed the survival of higher number of TH-positive neurons in SN in the MPP(+) model. Down-regulation of alpha-synuclein expression could be potentially a suitable target for gene therapy of Parkinson's disease.  相似文献   

8.
We established previously that alpha-synuclein displayed a protective anti-apoptotic phenotype in neurons, mainly by down-regulating p53-dependent caspase-3 activation (Alves da Costa, C., Ancolio, K., and Checler, F. (2000) J. Biol. Chem. 275, 24065-24069; Alves da Costa, C., Paitel, E., Vincent, B., and Checler, F. (2002) J. Biol. Chem. 277, 50980-50984). This function was abolished by Parkinson disease-linked pathogenic mutations and by the dopaminergic toxin, 6-hydroxydopamine (6OH-DOPA) (Alves da Costa, C., Paitel, E., Vincent, B., and Checler, F. (2002) J. Biol. Chem. 277, 50980-50984). However, the mechanisms by which 6OH-DOPA interfered with alpha-synuclein function remained unclear. Here we showed that 6OH-DOPA prevents alpha-synuclein-mediated anti-apoptotic function by altering its degradation. Thus, 6OH-DOPA treatment of TSM1 neurons and SH-SY5Y neuroblastoma cells enhances endogenous alpha-synuclein-like immunoreactivity and inhibits the catabolism of endogenous and recombinant alpha-synucleins by purified 20 S proteasome. Furthermore, we demonstrated that 6OH-DOPA directly inhibits endogenous proteasomal activity in TSM1 and SH-SY5Y cells and also blocks purified proteasome activity in vitro. This inhibitory effect can be prevented by the anti-oxidant phenyl-N-butylnitrone. We also established that 6OH-DOPA triggers the aggregation of recombinant alpha-synuclein in vitro. Therefore, we conclude that 6OH-DOPA abolishes alpha-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation, thereby increasing its intracellular concentration and potential propensity to aggregation, the latter phenomenon being directly exacerbated by 6OH-DOPA itself. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), another toxin inducer of Parkinson disease-like pathology, does not affect alpha-synuclein protective function and fails to trigger aggregation of recombinant alpha-synuclein. Furthermore, MPP(+) does not alter cellular proteasomal activity, and only high concentrations of the toxin affect purified 20 S proteasome by a mechanism that remains insensitive to phenyl-N-butylnitrone. The drastically distinct effects of 6OH-DOPA and MPP(+) on alpha-synuclein function are discussed with respect to Parkinson disease pathology and animal models mimicking this pathology.  相似文献   

9.
Urate is a major antioxidant as well as the enzymatic end product of purine metabolism in humans. Higher levels correlate with a reduced risk of developing Parkinson's disease (PD) and with a slower rate of PD progression. In this study we investigated the effects of modulating intracellular urate concentration on 1-methyl-4-phenyl-pyridinium (MPP(+))-induced degeneration of dopaminergic neurons in cultures of mouse ventral mesencephalon prepared to contain low (neuron-enriched cultures) or high (neuron-glial cultures) percentage of astrocytes. Urate, added to the cultures 24 hours before and during treatment with MPP(+), attenuated the loss of dopaminergic neurons in neuron-enriched cultures and fully prevented their loss and atrophy in neuron-astrocyte cultures. Exogenous urate was found to increase intracellular urate content in cortical neuronal cultures. To assess the effect of reducing cellular urate content on MPP(+)-induced toxicity, mesencephalic neurons were prepared from mice over-expressing urate oxidase (UOx). Transgenic UOx expression decreased endogenous urate content both in neurons and astrocytes. Dopaminergic neurons expressing UOx were more susceptible to MPP(+) in mesencephalic neuron-enriched cultures and to a greater extent in mesencephalic neuron-astrocyte cultures. Our findings correlate intracellular urate content in dopaminergic neurons with their toxin resistance in a cellular model of PD and suggest a facilitative role for astrocytes in the neuroprotective effect of urate.  相似文献   

10.
In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD.  相似文献   

11.
Chen H  Wang S  Ding JH  Hu G 《Journal of neurochemistry》2008,106(6):2345-2352
Edaravone (Eda) is a potent scavenger of hydroxyl radicals and has been demonstrated to be beneficial for patients with acute ischemic stroke. This study was set out to investigate whether Eda protect against MPP(+)-induced cytotoxicity in rat primary cultured astrocytes. The results showed that pre-treatment with Eda inhibited astrocytic apoptosis and lactate dehydrogenase release induced by MPP(+) (200 microM). Further study revealed that Eda prevented GSH depletion, down-regulated mRNA expressions of NADPH oxidase membrane subunit gp91 and membrane-translocated subunit p47, and prevented the decreases of state 3 respiration respiration and respiratory control ratio induced by MPP(+), and thereby inhibited reactive oxygen species production evoked by MPP(+). Moreover, Eda could ameliorate mitochondrial respiratory function, restrain, and prevent mitochondrial membrane potential loss induced by MPP(+). Consequently, Eda inhibited releases of cytochrome c and apoptosis-inducing factor induced by MPP(+). Taken together, these findings reveal for the first time that Eda protects against MPP(+)-induced astrocytic apoptosis via decreasing intracellular reactive oxygen species level and subsequently inhibiting mitochondrial apoptotic pathway. The antiapoptosis effects of Eda on astrocytes may provide a new perspective on neuroprotective therapy.  相似文献   

12.
Kynurenic acid (KYNA), a tryptophan metabolite in the kynurenine pathway, is protective against various insults. However, the molecular mechanism of this protective effect has not been identified. In this study, we examined the protective effects of KYNA against 1-methyl-4-phenylpyridinium (MPP(+)), the best-characterized toxin inducing pathological changes resembling Parkinson's disease (PD), using SH-SY5Y and SK-N-SH human neuroblastoma cells. Pre-treatment of KYNA attenuated MPP(+)-induced neuronal cell death in SH-SY5Y and SK-N-SH cells. MPP(+)-induced cell death was preceded by increases in Bax expression and mitochondrial dysfunction, such as collapse of mitochondrial membrane potential (DeltaPsi(m)), release of cytochrome c from mitochondria into the cytoplasm, and increases in caspase-9/-3 activities. KYNA effectively inhibited all of these mitochondrial apoptotic processes. Our results indicate that KYNA plays a protective role by down-regulating Bax expression and maintaining mitochondrial function in MPP(+)-induced neuronal cell death, and suggest that KYNA may have therapeutic potential in PD.  相似文献   

13.
Uptake of the Parkinsonism-inducing toxin, 1-methyl-4-phenylpyridinium (MPP(+)), into dopaminergic terminals is thought to block Complex I activity leading to ATP loss and overproduction of reactive oxygen species (ROS). The present study indicates that MPP(+)-induced ROS formation is not mitochondrial in origin but results from intracellular dopamine (DA) oxidation. Although a mean lethal dose of MPP(+) led to ROS production in identified dopaminergic neurons, toxic doses of the Complex I inhibitor rotenone did not. Concurrent with ROS formation, MPP(+) redistributed vesicular DA to the cytoplasm prior to its extrusion from the cell by reverse transport via the DA transporter. MPP(+)-induced DA redistribution was also associated with cell death. Depleting cells of newly synthesized and/or stored DA significantly attenuated both superoxide production and cell death, whereas enhancing intracellular DA content exacerbated dopaminergic sensitivity to MPP(+). Lastly, depleting cells of DA in the presence of succinate completely abolished MPP(+)-induced cell death. Thus, MPP(+) neurotoxicity is a multi-component process involving both mitochondrial dysfunction and ROS generated by vesicular DA displacement. These results suggest that in the presence of a Complex I defect, misregulation of DA storage could lead to the loss of nigrostriatal neurons in Parkinson's disease.  相似文献   

14.
Increasing evidence suggests that the ubiquitin-binding histone deacetylase-6 (HDAC6) plays an important role in the clearance of misfolded proteins by autophagy. In this study, we treated PC-12 cells over-expressing human mutant (A53T) α-synuclein (α-syn) and SH-SY5Y cells with MPP(+). It was found that HDAC6 expression significantly increased and mainly colocalized with α-syn in the perinuclear region to form aggresome-like bodies. HDAC6 deficiency blocked the formation of aggresome-like bodies and interfered with the autophagy in response to MPP(+)-induced stress. Moreover, misfolded α-syn accumulated into the nuclei, resulting in its reduced clearance, and finally, the number of apoptotic cells significantly increased. Taken together, HDAC6 participated in the degradation of MPP(+)-induced misfolded α-syn aggregates by regulating the aggresome-autophagy pathway. Understanding the mechanism may disclose potential therapeutic targets for synucleinopathies such as Parkinson's disease.  相似文献   

15.
The cellular mechanisms that may underlie the death of dopaminergic neurons in Parkinson's disease are ubiquitin-proteasomal system (UPS) impairment, mitochondrial dysfunction, and oxidative stress. The goal of this work was to elucidate the correlation between mitochondrial dysfunction and UPS impairment, focusing on the role of oxidative stress. Our data revealed that mitochondria-DNA-depleted cells (rho0) are compromised at the mitochondrial and UPS levels and also show an alteration of the oxidative status. In parental cells (rho+), MPP(+) induced a clear inhibition of complex I activity, as well as an increase in ubiquitinylated protein levels, which was not observed in cells treated with lactacystin. Moreover, MPP(+) induced a decreased in the 20S chymotrypsin-like and peptidyl-glutamyl peptide hydrolytic-like proteolytic activities after 24 h of exposure. ROS production was increased in rho+ cells treated with MPP(+) or lactacystin, at early treatment periods. MPP(+) induced an increase in carbonyl group formation in rho+ cells. The results suggest that a mitochondrial alteration leads to an imbalance in the cellular oxidative status, inducing a proteasomal deregulation, which may exacerbate protein aggregation, and consequently degenerative events.  相似文献   

16.
Human wild type (WT) and mutant alpha-synuclein (alpha-syn) genes were overexpressed using a Tet-on expression system in stably transfected dopaminergic MN9D cells. Their overexpression induced caspase-independent and dopamine-related apoptosis not rescued by general caspase inhibitor Z-VAD-FMK. While apoptosis due to overexpression of WT alpha-syn was completely abrogated by a specific tyrosine hydroxylase (TH) inhibitor, alpha-methyl-p-tyrosine (alpha-MT), the inhibitor only partially rescued apoptosis caused by overexpression of alpha-syn mutants. In addition, overexpression of mutants enhanced the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxyldopamine (6-OHDA) to MN9D cells, whereas overexpression of WT protected MN9D cells against MPP+ toxicity, but not against 6-OHDA. We conclude that WT alpha-syn is beneficial to dopaminergic neurons but its overexpression in the presence of endogenous dopamine makes it a potential threat to the cells. In contrast, mutant alpha-syn not only caused the loss of WT protective function but also the gain-of-toxicity which becomes more serious in the presence of dopamine and neurotoxins.  相似文献   

17.
Yang ES  Park JW 《BMB reports》2011,44(5):312-316
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.  相似文献   

18.
The neuropathology associated with Parkinson's disease (PD) is thought to involve excessive production of free radicals, dopamine autoxidation, defects in glutathione peroxidase expression, attenuated levels of reduced glutathione, altered calcium homeostasis, excitotoxicity and genetic defects in mitochondrial complex I activity. While the neurotoxic mechanisms are vastly different for excitotoxins and 1-methyl-4-phenylpyridinium ion (MPP(+)), both are thought to involve free radical production, compromised mitochondrial activity and excessive lipid peroxidation. We show here that the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) increased significantly after treatment of cultured cerebellar granule cells (CGCs) with 50 microM MPP(+). Co-treatment with antioxidants such as ascorbate (ASC), catalase, alpha-tocopherol (alpha-TOH), coenzyme Q(10) (CoQ(10)) or superoxide dismutase (SOD) rescued the cells from MPP(+)-induced death. MPP(+)-induced cell death was also abolished by co-treatment with nitric oxide synthase (NOS) inhibitors such as 7-nitroindazole (7-NI), 2-ethyl-2-thiopseudourea hydrobromide (EPTU) or S-methylisothiourea sulphate (MPTU). We also tested the protective effects of an iron chelator (deferoxamine mesylate, DFx) and a peroxynitrite scavenger (FeTTPS) and the results lend further support to the view that the free radical cytotoxicity plays an essential role in MPP(+)-induced death in primary cultures of CGC.  相似文献   

19.
Recent etiological study in twins (Tanner et al. 1999) strongly suggests that environmental factors play an important role in typical, non-familial Parkinson's disease (PD), beginning after age 50. Epidemiological risk factor analyses of typical PD cases have identified several neurotoxicants, including MPP(+) (the active metabolite of MPTP), paraquat, dieldrin, manganese and salsolinol. Here, we tested the hypothesis that these neurotoxic agents might induce cell death in our nigral dopaminergic cell line, SN4741 (Son et al. 1999) through a common molecular mechanism. Our initial experiments revealed that treatment with both MPP(+) and the other PD-related neurotoxicants induced apoptotic cell death in SN4741 cells, following initial increases of H(2)O(2)-related ROS activity and subsequent activation of JNK1/2 MAP kinases. Moreover, we have demonstrated that during dopaminergic cell death cascades, MPP(+), the neurotoxicants and an oxidant, H(2)O(2) equally induce the ROS-dependent events. Remarkably, the oxidant treatment alone induced similar sequential molecular events: ROS increase, activation of JNK MAP kinases, activation of the PITSLRE kinase, p110, by both Caspase-1 and Caspase-3-like activities and apoptotic cell death. Pharmacological intervention using the combination of the antioxidant Trolox and a pan-caspase inhibitor Boc-(Asp)-fmk (BAF) exerted significant neuroprotection against ROS-induced dopaminergic cell death. Finally, the high throughput cDNA microarray screening using the current model identified downstream response genes, such as heme oxygenase-1, a constituent of Lewy bodies, that can be the useful biomarkers to monitor the pathological conditions of dopaminergic neurons under neurotoxic insult.  相似文献   

20.
The nuclear factor-kappaB (NF-kappaB) family plays an important role in the control of the apoptotic response. Its activation has been demonstrated in both neurons and glial cells in many neurological disorders. In the present study, we specifically examined whether and to what extent NF-kappaB activation is involved in culture models of Parkinson's disease following exposure of MN9D dopaminergic neuronal cells to 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP(+)). Both analysis by immunocytochemistry and of immunoblots revealed that NF-kappaB-p65 was translocated into the nuclei following 6-OHDA but not MPP(+)-treatment. A time-dependent activation of NF-kappaB induced by 6-OHDA but not MPP(+) was also demonstrated by an electrophoretic mobility shift assay. A competition assay indicated that not only NF-kappaB-p65 but also -p50 is involved in 6-OHDA-induced NF-kappaB activity. Co-treatment with an antioxidant, N-acetyl-l-cysteine, blocked 6-OHDA-induced activation of NF-kappaB signaling. In the presence of an NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), 6-OHDA-induced cell death was accelerated while PDTC did not affect MPP(+)-induced cell death. Our data may point to a drug-specific activation of NF-kappaB as a survival determinant for dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号