首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

2.
Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome‐wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large‐ and fine‐scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (FCT range 0.275–0.705) and fine‐scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.  相似文献   

3.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

4.
Anadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species. The database included microsatellite data from 9142 individuals from 149 sampling locations and data from a medium‐density SNP array providing genotypes for >3000 SNPs for 50 sampling locations. We used neutral and putatively selected loci to integrate adaptive information in the definition of conservation units. Bayesian clustering with the microsatellite data set and with neutral SNPs identified regional groupings largely consistent with previously published regional assessments. The use of outlier SNPs did not result in major differences in the regional groupings, suggesting that neutral markers can reflect the geographic scale of local adaptation despite not being under selection. We also performed assignment tests to compare power obtained from microsatellites, neutral SNPs and outlier SNPs. Using SNP data substantially improved power compared to microsatellites, and an assignment success of 97% to the population of origin and of 100% to the region of origin was achieved when all SNP loci were used. Using outlier SNPs only resulted in minor improvements to assignment success to the population of origin but improved regional assignment. We discuss the implications of these new genetic resources for the conservation and management of Atlantic salmon in North America.  相似文献   

5.
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio‐economically, relatively little information is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; c. 21 Kya) indicated large areas of suitable habitat south of the species’ current‐day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long‐term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species.  相似文献   

6.
Genetic variation at 5 microsatellite loci was analyzed for European hake Merluccius merluccius sampled from 9 different regions in the Atlantic Ocean and the Mediterranean Sea. Significant genetic differentiation was found between samples, suggesting a fine subdivision of Atlantic and Mediterranean hake stocks. These results are discussed in the context of the decline of demersal fish species, probably due to overfishing.  相似文献   

7.
Age at maturity is a key life‐history trait of most organisms. In anadromous salmonid fishes such as Atlantic Salmon (Salmo salar), age at sexual maturity is associated with sea age, the number of years spent at sea before the spawning migration. For the first time, we investigated the presence of two nonsynonymous vgll3 polymorphisms in North American Atlantic Salmon populations that relate to sea age in European salmon and quantified the natural variation at these and two additional candidate SNPs from two other genes. A targeted resequencing assay was developed and 1,505 returning adult individuals of size‐inferred sea age and sex from four populations were genotyped. Across three of four populations sampled in Québec, Canada, the late‐maturing component (MSW) of the population of a given sex exhibited higher proportions of SNP genotypes 54Thrvgll3 and 323Lysvgll3 compared to early‐maturing fish (1SW), for example, 85% versus 53% of females from Trinité River carried 323Lysvgll3 (nMSW = 205 vs. n1SW = 30; p < .001). However, the association between vgll3 polymorphism and sea age was more pronounced in females than in males in the rivers we studied. Logistic regression analysis of vgll3 SNP genotypes revealed increased probabilities of exhibiting higher sea age for 54Thrvgll3 and 323Lysvgll3 genotypes compared to alternative genotypes, depending on population and sex. Moreover, individuals carrying the heterozygous vgll3 SNP genotypes were more likely (>66%) to be female. In summary, two nonsynonymous vgll3 polymorphisms were confirmed in North American populations of Atlantic Salmon and our results suggest that variation at those loci correlates with sea age and sex. Our results also suggest that this correlation varies among populations. Future work would benefit from a more balanced sampling and from adding data on juvenile riverine life stages to contrast our data.  相似文献   

8.
Differentiation at nine microsatellite loci revealed that a Levantine Basin sea bass Dicentrarchus labrax population probably represents a further subdivision of this species in the eastern Mediterranean.  相似文献   

9.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

10.
The population genetic structure of sea bass (Dicentrarchus labrax) along a transect from the Atlantic Ocean (AO) to the Eastern Mediterranean (EM) Sea differs from that of most other marine taxa in this area. Three populations (AO, Western Mediterranean [WM], EM) are recognized today, which were originally two allopatric populations. How two ancestral genetic units have evolved into three distinct units has not been addressed yet. Therefore, to investigate mechanisms that lead to the emergence of the central WM population, its current status, and its connectivity with the two parental populations, we applied 20 nuclear loci that were either gene associated or gene independent. Results confirmed the existence of three distinct gene pools, with higher differentiation at two transitional areas, the Almeria‐Oran Front (AOF) and of the Siculo‐Tunisian Strait (STS), than within any population. Significant linkage disequilibrium and heterozygote excess indicated that the STS is probably another tension zone, as already described for the AOF. Neutrality tests fail to reveal marker loci that could be driven by selection within or among metapopulations, except for locus DLA0068. Collectively, results support that the central WM population arose by trapping two tensions zones at distinct geographic locations of limited connectivity. Population assignment further revealed that WM individuals were more introgressed than individuals from the other two metapopulations. This suggests that this population might result from hybrid swarming, and was or is still seeded by genes received through the filter of each tension zone.  相似文献   

11.
White bass (Morone chrysops), striped bass and their interspecific hybrid are important game fishes, whereas the hybrid striped bass is an important aquaculture species in the US. Numerous state, federal and private hatcheries, therefore, rear these species for stocking purposes as well as for food fish. Although striped bass populations (both wild and domesticated) have been extensively evaluated, relatively little effort has been directed toward the study and improvement of white bass. In this study, we developed SNP resources to examine the genetic relationships among a long‐term domesticated white bass line and five potential founder stocks for selective breeding collected from drainages in Arkansas, Texas and Alabama. Using genotyping‐by‐sequencing, we generated 13 872 genome‐wide SNP loci across the six populations. Stringent filtering of SNP‐calling parameters identified 426 informative SNP loci. Population genetic and structure analyses using these loci revealed only moderate genetic differentiation between populations (global Fst = 0.083) and indicated two major genetic clusters. A final 57‐SNP assay was successfully designed and validated using the MassARRAY system. The developed SNP panel assigned 96 additional genotyped individuals to their population of origin with 100% accuracy. The SNP resources developed in this study should facilitate ongoing efforts in selective breeding and conservation of white bass.  相似文献   

12.
Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.  相似文献   

13.
To investigate the origin and maintenance of the genetic discontinuity between Atlantic and Mediterranean populations of the common sea bass (Dicentrarchus labrax) we analysed the genetic variation at a fragment of mitochondrial cytochrome b sequence for 18 population samples. The result were also compared with new or previously published microsatellite data. Seven mitochondrial haplotypes and an average nucleotidic divergence of 0.02 between Atlantic and Mediterranean populations that matches a Pleistocene allopatric isolation were found. The frequency variation at the cytochrome b locus was many times greater between Atlantic and Mediterranean populations (theta(C) = 0.67) than at microsatellite loci (theta(N)= 0.02). The examination of the different evolutionary forces at play suggests that a sex-biased hybrid breakdown is a likely explanation for part of the observed discrepancy between mitochondrial and nuclear loci. In addition, an analysis is made of the correlation between microsatellite loci points towards the possible existence of a hybrid zone in samples from the Alboran Sea.  相似文献   

14.
Genetic variation has been difficult to detect in striped bass (Morone saxatilis). Therefore, we identified and characterized 13 microsatellite loci to provide additional genetic markers for striped bass. Microsatellites were identified by screening a striped bass genomic library or by using primers developed for European sea bass (Dicentrarchus labrax) microsatellite loci. We found that 6 of the 13 microsatellite loci were polymorphic in DNA samples obtained from wild populations of striped bass. The number of alleles per locus varied from 3 to 12, and the observed heterozygosities ranged from 0.55 to 0.78. These results indicate that microsatellite loci provide more alleles and higher heterozygosities than other genetic markers developed for striped bass. Received November 9, 1999; accepted February 11, 2000.  相似文献   

15.
Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site‐associated DNA sequencing (RAD‐Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean FST 0.008; range 0.00–0.018) were concordant with previous microsatellite‐based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age‐1 and age‐2 families of full and half‐siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non‐native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.  相似文献   

16.
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome‐scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence‐ and diversity‐based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real‐time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage‐specific adaptive evolution in this unique sea basin.  相似文献   

17.
Roberts MA  Schwartz TS  Karl SA 《Genetics》2004,166(4):1857-1870
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model.  相似文献   

18.
We studied the genetic structure at six microsatellite loci of the Mediterranean sea bass (Dicentrarchus labrax) on 19 samples collected from different localities in the western and eastern Mediterranean basins. Significant divergence was found between the two basins. The distance tree showed two separate clusters of populations which matched well with geography, with the noticeable exception of one Egyptian sample which grouped within the western clade, a fact attributable to the introduction of aquaculture broodstock. No heterogeneity was observed within the western basin (theta = 0.0014 and n.s.). However, a significant level of differentiation was found among samples of the eastern Mediterranean (theta = 0.026 and p < 0.001). These results match with water currents but probably not with the dispersal abilities of this fish species. We thus hypothesize that selective forces are at play which limit long-range dispersal, a fact to be taken into account in the debate about speciation processes in the marine environment.  相似文献   

19.
Several new fish species are currently being included in breeding programmes. However, as specific molecular markers have not yet been developed, this represents a commercial handicap with respect to traditional aquaculture species such as gilthead sea bream or Atlantic salmon. In the present study, 12 new microsatellite loci were developed for blackspot sea bream (Pagellus bogaraveo) that show high levels of polymorphism, especially useful in parentage assignment and individual identification. In addition, cross‐amplification was obtained for two important species for Spanish aquaculture, gilthead sea bream and sea bass.  相似文献   

20.
Endangered species are grouped into genetically discrete populations to direct conservation efforts. Mitochondrial control region (mtCR) haplotypes are used to elucidate deep divergences between populations, as compared to nuclear microsatellites that can detect recent structuring. When prior populations are unknown, it is useful to subject microsatellite data to clustering and/or ordination population inference. Olive ridley sea turtles (Lepidochelys olivacea) are the most abundant sea turtle, yet few studies have characterized olive ridley population structure. Recently, clustering results of olive ridleys in the Eastern Tropical Pacific Ocean suggested weak structuring (FST = 0.02) between Mexico and Central America. We analyzed mtCR haplotypes, new microsatellite genotypes from Costa Rica, and preexisting microsatellite genotypes from olive ridleys across the Eastern Tropical Pacific, to further explore population structuring in this region. We subjected inferred populations to multiple analyses to explore the mechanisms behind their structuring. We found 10 mtCR haplotypes from 60 turtles nesting at three sites in Costa Rica, but did not detect divergence between Costa Rican sites, or between Central America and Mexico. In Costa Rica, clustering suggested one population with no structuring, but ordination suggested four cryptic clusters with moderate structuring (FST = 0.08, p < .001). Across the Eastern Tropical Pacific, ordination suggested nine cryptic clusters with moderate structuring (FST = 0.103, p < .001) that largely corresponded to Mexican and Central American populations. All ordination clusters displayed significant internal relatedness relative to global relatedness (p < .001) and contained numerous sibling pairs. This suggests that broadly dispersed family lineages have proliferated in Eastern Tropical Pacific olive ridleys and corroborates previous work showing basin‐wide connectivity and shallow population structure in this region. The existence of broadly dispersed kin in Eastern Tropical Pacific olive ridleys has implications for management of olive ridleys in this region, and adds to our understanding of sea turtle ecology and life history, particularly in light of the natal‐homing paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号