首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of salirasib (S-trans,trans-farnesylthiosalicylic acid, FTS) in human plasma. Sample pretreatment involved liquid-liquid extraction with methyl t-butyl ether of 0.5-mL aliquots of lithium heparin plasma spiked with the internal standard, S-trans,trans-5-fluoro-farnesylthiosalicylic acid (5-F-FTS). Separation was achieved on Waters X-Terra C(18) (50 mm x 2.1 mm i.d., 3.5 microm) at room temperature using isocratic elution with acetonitrile/10 mM ammonium acetate buffer mobile phase (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.20 mL/min. Detection was performed using electrospray MS/MS by monitoring the ion transitions from m/z 357.2-->153.0 (salirasib) and m/z 375.1-->138.8 (5-F-FTS). Calibration curves were linear in the concentration range of 1-1000 ng/mL. A 5000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical method (<8.0%). This assay was subsequently used for the determination of salirasib concentrations in plasma of cancer patients after oral administration of salirasib at a dose of 400 mg.  相似文献   

2.
The clinical development of a sensitizer for photodynamic therapy (PDT) requires the structural identification of the photoproducts and their quantification in biological fluids and tissues. We describe the LC-MS identification of the most important photoproducts of a cationic phthalocyanine sensitizer (RLP068/Cl) and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of the main photoproduct (the cationic phthalimide derivative 3-[(1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl)oxy]-N,N,N-trimethylbenzenaminium chloride) in rabbit plasma. The tri-deuterated product was used as co-eluting internal standard. The cationic photoproduct was isolated from plasma samples by protein precipitation with perchloric acid in methanol (7%, v/v). HPLC step was performed on a Phenomenex Synergi Hydro-RP column (20 mm x 2.0 mm, 2 microm particles) with a mobile phase of 0.5% (v/v) aqueous TFA/methanol (85:15, v/v). Flow rate was 0.2 mL/min and 40 microL injection were performed. Run time was 10 min. Detection was achieved by means of a Bruker Esquire 3000+ ion trap mass spectrometer equipped with an ESI source working in positive mode. A multiple reaction monitoring method following the transitions 297.1 --> 282.1 for the analyte and 300.1 --> 282.1+285.1 for the internal standard was used. The analytical method was validated over the concentration range 0.46-91.2 ng/mL and lower limits of detection (LLOD) and quantification (LLOQ) respectively of 0.2 and 0.5 ng/mL were found.  相似文献   

3.
An HPLC-MS/MS method was developed for the determination of MK-0518 (raltegravir), an HIV integrase inhibitor, in human plasma over the concentration range of 2-1000 ng/mL. Stable isotope labeled (13)C(6)-MK-0518 was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction with hexane:methylene chloride in the 96-well format with a 200 microL plasma sample size. The compounds were chromatographed on an Ace C(18) (50 x 3.0 mm, 3 microm, titanium frits) column with 42.5/57.5 (v/v %) 0.1mM EDTA in 0.1% formic acid/methanol mobile phase at a flow rate of 0.5 mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for MK-0518 (m/z 445-->109) and (13)C(6)-MK-0518 (m/z 451-->367) on an Applied Biosystem API 4000 HPLC-MS/MS was used for quantitation. Intraday precision of standard curve concentrations in five different lots of control plasma was within 3.2%, while accuracy ranged from 94.8 to 106.8%. The mean extraction recovery of spiked plasma samples was 87%. Quality control (QC) samples were stored at -20 degrees C. Initial within day analysis showed QC accuracy within 7.5% of nominal with precision of 3.1% or less. The plasma QC samples were demonstrated to be stable for up to 23 months at -20 degrees C. The method described has been used to support over 18 clinical studies during Phase I through III of clinical development.  相似文献   

4.
A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.  相似文献   

5.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

6.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection (LC-MS/MS) was developed for the determination of a potent 5-HT(1B/1D) receptor agonist, rizatriptan in human plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 100 microL plasma samples by liquid-liquid extraction (LLE) and chromatographed on a Lichrospher C18 column (4.6mm x 50mm, 5 microm) with a mobile phase consisting of acetonitrile-10mM aqueous ammonium acetate-acetic acid (50:50:0.5, v/v/v) pumped at 1.0 mL/min. The method had a chromatographic total run time of 2 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 270-->201 (rizatriptan) and 313.4-->138 (granisetron) used for quantitation. The assay was validated over the concentration range of 0.05-50 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was above 98%. The intra-day accuracy of the assay was within 12% of nominal and intra-day precision was better than 13% C.V. Following a 10mg dose of the compound administered to human subjects, mean concentrations of rizatriptan ranged from 0.2 to 70.6 ng/mL in plasma samples collected up to 24h after dosing. Inter-day accuracy and precision results for quality control samples run over a 5-day period alongside clinical samples showed mean accuracies of within 12% of nominal and precision better than 9.5% C.V.  相似文献   

7.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

8.
Glycyrrhizin (GLY) which has been widely used in traditional Chinese medicinal preparation possesses various pharmacological effects. In order to investigate the pharmacokinetic behavior of GLY in human after oral administration of GLY or licorice root, a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of GLY and its major metabolite glycyrrhetic acid (GA) in human plasma. The method involved a solid phase extraction of GLY, GA, and alpha-hederin, the internal standard (IS), from plasma with Waters Oasis MCX solid phase extraction (SPE) cartridges (30 mg) and a detection using a Micromass Quattro LC liquid chromatography/tandem mass spectrometry system with electrospray ionization source in positive ion mode. Separation of the analytes was achieved within 5min on a SepaxHP CN analytical column with a mobile phase of acetonitrile:water (50:50, v:v) containing 0.1% formic acid and 5mM ammonium acetate. Multiple reaction monitoring (MRM) was utilized for the detection monitoring 823--> 453 for GLY, 471--> 177 for GA and 752--> 456 for IS. The LC-MS/MS method was validated for specificity, sensitivity, accuracy, precision, and calibration function. The assay had a calibration range from 10 to 10,000 ng/mL and a lower limit of quantification of 10 ng/mL for both GLY and GA when 0.2 mL plasma was used for extraction. The percent coefficient of variation for accuracy and precision (inter-run and intra-run) for this method was less than 11.0% with a %Nominal ranging from 87.6 to 106.4% for GLY and 93.7 to 107.8% for GA. Stability of the analytes over sample processing (freeze/thaw, bench-top and long-term storage) and in the extracted samples was also tested and established.  相似文献   

9.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

10.
Bestatin is a low molecular weight aminopeptidase inhibitor originally isolated from culture filtrates of Streptomyces olivoreticuli. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of bestatin in rat plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 50 microL plasma samples by solid phase extraction (SPE). Reverse-phase HPLC separation was accomplished on a Lichrospher C18 column (4.6 mm x 50 mm, 5 microm) with a mobile phase composed of methanol-water-formic acid (70:30:0.5, v/v/v) at a flow rate of 0.8 mL/min. The method had a chromatographic total run time of 3 min. A Varian 1200L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 309.2-->120.0 (bestatin) and 313.4-->138.0 (granisetron) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 5 ng/mL, with good linearity (r2 >or= 0.999) over the linear range of 5-2000 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of bestatin in rats.  相似文献   

11.
A sensitive, rapid liquid chromatographic-electrospray ionization mass spectrometric method for the determination of xanthinol in human plasma was developed and validated. Xanthinol nicotinate in plasma (0.5mL) was pretreated with 20% trichloroacetic acid for protein precipitation. The samples were separated using a Lichrospher silica (5mum, 250mmx4.6mm i.d.). A mobile phase of methanol-water containing 0.1% formic acid (50: 50, v/v) was used isocratically eluting at a flow rate of 1mL/min. Xanthinol and its internal standard (IS), acyclovir, were measured by electrospray ion source in positive selected reaction monitoring mode. The method demonstrated that good linearity ranged from 10.27 to 1642.8ng/mL with r=0.9956. The limit of quantification for xanthinol in plasma was 10.27ng/mL with good accuracy and precision. The mean plasma extraction recovery of xanthinol was in the range of 90.9-100.2%. The intra- and inter-batch variability values were less than 4.8% and 7.9% (relative standard deviation, R.S.D.), respectively. The established method has been successfully applied to a bioequivalence study of two xanthinol nicotinate tablets for 20 healthy volunteers.  相似文献   

12.
A liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI-MS/MS) method for the determination of andrographolide in human plasma was established. Dehydroandrographolide was used as the internal standard (I.S.). The plasma samples were deproteinized with methanol and separated on a Hanbon C18 column with a mobile phase of methanol–water (70:30, v/v). HPLC–ESI-MS/MS was performed in the selected ion monitoring (SIM) mode using target ions at [M?H2O–H]?, m/z 331.1 for andrographolide and [M?H]?, m/z 331.1 for the I.S. Calibration curve was linear over the range of 1.0–150.0 ng/mL. The chromatographic separation was achieved in less than 6.5 min. The lower limits of quantification (LLOQ) was 1.0 ng/mL. The intra and inter-run precisions were less than 6.95 and 7.22%, respectively. The method was successfully applied to determine the plasma concentrations of andrographolide in Chinese volunteers.  相似文献   

13.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method has been developed and validated for the determination of palmatine in canine plasma. Palmatine and jatrorrhizine (internal standard, I.S.) were extracted from plasma samples by solid-phase extraction (SPE) using Oasis HLB cartridges. The chromatographic separation was performed on a Waters XTerra MS C(18) reversed-phase column at 30 degrees C. The gradient mobile phase, delivered at 0.25 mL/min, was composed of a mixture of acetonitrile -0.1% (v/v) acetic acid aqueous solution adjusted to pH 2.8 with triethylamine. Positive electrospray ionization was utilized as the ionization source. Palmatine and the internal standard (I.S.) were determined using multiple reaction monitoring (MRM) of precursor-->product ion transitions at m/z 352-->336 and m/z 338-->322, respectively. The lower limit of quantification (LLOQ) was 0.1 ng/mL using 100 microL plasma samples and the linear calibration range was from 0.1 to 500 ng/mL. The inter-day and intra-day RSDs were lower than 9.9% and the recoveries of palmatine ranged from 87.3 to 100.9%. The mean extraction recoveries of palmatine and the I.S. were 99.2 and 96.8%, respectively. The method has been successfully applied to the pharmacokinetic studies of palmatine in beagle dogs after oral administration and intramuscular injection of palmatine.  相似文献   

14.
A highly sensitive and selective LC–MS/MS method was developed and validated for the determination of dauricine in human plasma, using protopine as internal standard (IS). The analyte and IS were extracted by liquid–liquid extraction and analyzed by LC–MS/MS. Chromatographic separation was performed on Agilent TC-C18 column with a mobile phase of methanol–water–glacial acetic acid (60:40:0.8, v/v/v) at a flow rate of 0.7 mL/min. Detection was performed on a triple quadrupole tandem mass spectrum by multiple reaction monitoring (MRM) mode using the electrospray ionization technique in positive mode. The method was linear over the concentration range of 1–200 ng/mL. The lower limit of quantification (LLOQ) was 1 ng/mL in human plasma with acceptable precision and accuracy. The intra- and inter-day precision was less than 5.9% determined from quality control (QC) samples at concentrations of 2.0, 20.0 and 160 ng/mL, and the accuracy was within ±9.9%. This method was successfully applied for the evaluation of pharmacokinetics of dauricine after oral doses of 100, 300 and 600 mg phenolic alkaloids of menispermum dauricum tablet (PAMDT) to 12 Chinese healthy volunteers.  相似文献   

15.
A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of triazolam and its metabolites, alpha-hydroxytriazolam (alpha-OHTRZ) and 4-hydroxytriazolam (4-OHTRZ), was developed and validated. Triazolam-D4 was used as the internal standard (IS). This analysis was carried out on a Thermo((R)) C(18) column and the mobile phase was composed of acetonitrile:H(2)O:formic acid (35:65:0.2, v/v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) and quantification was performed by multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 343.1-->308.3, 359.0-->308.3, 359.0-->111.2 and 347.0-->312.0 for triazolam, alpha-OHTRZ, 4-OHTRZ and triazolam-D4, respectively. LLOQ of the analytical method was 0.05ng/mL for triazolam and 0.1ng/mL for alpha-OHTRZ and 4-OHTRZ. The within- and between-run precisions were less than 15.26% and accuracy was -8.08% to 13.33%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of triazolam in healthy Chinese volunteers.  相似文献   

16.
A simple, sensitive and high throughput liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC–ESI-MS/MS) method has been developed for the simultaneous determination of valacyclovir and acyclovir in human plasma using fluconazole as internal standard (IS). The method involved solid phase extraction of the analytes and IS from 0.5 mL human plasma with no reconstitution and drying steps (direct injection of eluate). The chromatographic separation was achieved on a Gemini C18 analytical column using isocratic mobile phase, consisting of 0.1% formic acid and methanol (30:70 v/v), at a flow-rate of 0.8 mL/min. The precursor  product ion transition for valacyclovir (m/z 325.2  152.2), acyclovir (m/z 226.2  152.2) and IS (m/z 307.1  220.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range 5.0–1075 ng/mL and 47.6–10225 ng/mL for valacyclovir and acyclovir respectively. The mean recovery of valacyclovir (92.2%), acyclovir (84.2%) and IS (103.7%) from spiked plasma samples was consistent and reproducible. The bench top stability of valacyclovir and acyclovir was extensively evaluated in buffered and unbuffered plasma. It was successfully applied to a bioequivalence study in 41 healthy human subjects after oral administration of 1000 mg valacyclovir tablet formulation under fasting condition.  相似文献   

17.
Protodioscin (3-O-[alpha-L-rhamnopyranosyl-(1-->2)-{alpha-L-rhamnopyranosyl-(1-->4)}-beta-D-glucopyranosyl]-26-O-[beta-D-glucopyranosyl]-(25 R)-furost-5-ene-3 beta,26-diol) is a naturally occurring saponin present in many oriental vegetables and traditional medicinal plants, which has been associated with potent bioactivity. However, there is no specific and sensitive assay for quantitative determination of protodioscin in biological samples. We have established a rapid, sensitive and selective LC-ESI-MS/MS method to measure protodioscin in rat plasma and investigated the pharmacokinetics of protodioscin after intravenous administrations. Plasma samples were prepared after plasma protein precipitation, and a aliquot of the supernatant was injected directly onto an analytical column with a mobile phase consisted of acetonitrile-water-formic acid (80:20:0.1, v/v/v). Analytes were detected with a LC-ESI-MS/MS system in positive selected multiple reaction-monitoring mode. The lower limit of quantification (LLOQ) was 20.0 ng/mL and a linear range of 20-125,000 ng/mL. The intra- and inter-day relative standard deviation (R.S.D.) across three validation runs over the entire concentration range was <8.0%. Accuracy determined at three concentrations (50, 5000 and 50,000 ng/mL for protodioscin) ranged from 0.2 to 1.8% as terms of relative error (R.E.). Each plasma sample was chromatographed within 3.5 min. This LC-ESI-MS/MS method allows accurate, high-throughput analysis of protodioscin in small amounts of plasma.  相似文献   

18.
A simple sensitive and robust method for simultaneous determination of citalopram and desmethylcitalopram was developed using liquid chromatography tandem mass spectrometry (LC–MS/MS). A 200 μL aliquot of plasma sample was employed and deproteinized with methanol and desipramine was used as the internal standard. After vortex mixing and centrifugation, the supernatant was diluted with water (1:1, v/v) and then directly injected to analysis. Analytes were separated by a Zorbax XDB C18 column with the mobile phase composed of acetonitrile and water (30:70, v/v) with 0.25% formic acid and monitored in MRM mode using a positive electrospray source with tandem mass spectrometry detection. The total run time was 3.5 min. The dynamic range was 0.2–100 ng/mL for citalopram and 0.25–50 ng/mL for desmethylcitalopram, respectively. Compared to the best existing literatures for plasma samples, the same LOQ for CIT (0.5 ng/mL) and lower LOQ for DCIT (0.25 vs 5 ng/mL) were reached, and less sample preparation steps and runtime (3.5 vs 10 min) were taken for our method. Accuracy and precision was lower than 8% and lower than 11.5% for either target. Validation results and its application to the analysis of plasma samples after oral administration of citalopram in healthy Chinese volunteers demonstrated the method was applicable to pharmacokinetic studies.  相似文献   

19.
A highly sensitive and enantioselective assay has been developed and validated for the estimation of torcetrapib (TTB) enantiomers [(+)-TTB and (-)-TTB] in hamster plasma with chiral liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization interface in the negative-ion mode. The assay procedure involves liquid-liquid extraction of TTB enantiomers and IS (DRL-16126) from 100 microL hamster plasma with acetonitrile. TTB enantiomers were separated using n-hexane:propanol (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralpak AD column. The MS/MS ion transitions monitored were 599.2-->340.2 for TTB and 623.2-->298.1 for IS. Absolute recovery was found to be between 64 and 68% for TTB enantiomers and >100% for IS. The standard curves for TTB enantiomers were linear (r(2)>0.995) in the concentration range 5-2500 ng/mL for each enantiomer with an LLOQ of 5 ng/mL for each enantiomer. The inter- and intra-day precisions were in the range of 10.5-12.4 and 9.15-11.5% and 3.75-12.9 and 5.16-12.5% for (+)-TTB and (-)-TTB, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 91.3-105 and 88.6-111% for (+)-TTB and (-)-TTB, respectively. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (-)-TTB.  相似文献   

20.
A new LC-ESI-MS/MS assay method has been developed and validated for the quantification of swertiamarin, a representative bioactive substance of Swertia plants, in rat plasma using gentiopicroside, an analog of swertiamarin on chemical structure and chromatographic action, as the internal standard (IS). The swertiamarin and IS were extracted from rat plasma using solid-phase extraction (SPE) as the sample clean-up procedure, and they were chromatographed on a narrow internal diameter column (Agilent ZORBAX ECLIPSE XDB-C(18) 100 mm × 2.1 mm, 1.8 μm) with the mobile phase consisting of methanol and water containing 0.1% acetic acid (25:75, v/v) at a flow rate of 0.2 mL/min. The detection was performed on an Agilent G6410B tandem mass spectrometer by negative ion electrospray ionisation in multiple-reaction monitoring mode while monitoring the transitions of m/z 433 [M+CH(3)COO](-)→179 and m/z 415 [M+CH(3)COO](-)→179 for swertiamarin and IS, respectively. The lower limit of quantification (LLOQ) was 5 ng/mL within a linear range of 5-1000 ng/mL (n=7, r(2)≥0.994), and the limit of detection (LOD) was demonstrated as 1.25 ng/mL (S/N≥3). The method also afforded satisfactory results in terms of sensitivity, specificity, precision (intra- and inter-day), accuracy, recovery, freeze/thaw, long-time stability and dilution integrity. This method was successfully applied to determination of the pharmacokinetic properties of swertiamarin in rats after oral administration at a dose of 20 mg/kg. The following pharmacokinetic parameters were obtained (mean): maximum plasma concentration, 1920.1 ng/mL; time to reach maximum plasma concentration, 0.945 h; elimination half-time, 1.10h; apparent total clearance, 5.638 L/h/kg; and apparent volume of distribution, 9.637 L/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号