首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

2.
3.
Carotenoid biotechnology in plants for nutritionally improved foods   总被引:8,自引:1,他引:7  
Carotenoids participate in light harvesting and are essential for photoprotection in photosynthetic plant tissues. They also furnish non-photosynthetic flowers and fruits with yellow to red colors to attract animals for pollination and dispersal of seeds. Although animals can not synthesize carotenoids de novo , carotenoid-derived products such as retinoids (including vitamin A) are required as visual pigments and signaling molecules. Dietary carotenoids also provide health benefits based on their antioxidant properties. The main pathway for carotenoid biosynthesis in plants and microorganisms has been virtually elucidated in recent years, and some of the identified biosynthetic genes have been successfully used in metabolic engineering approaches to overproduce carotenoids of interest in plants. Alternative approaches that enhance the metabolic flux to carotenoids by upregulating the production of their isoprenoid precursors or interfere with light-mediated regulation of carotenogenesis have been recently shown to result in increased carotenoid levels. Despite spectacular achievements in the metabolic engineering of plant carotenogenesis, much work is still ahead to better understand the regulation of carotenoid biosynthesis and accumulation in plant cells. New genetic and genomic approaches are now in progress to identify regulatory factors that might significantly contribute to improve the nutritional value of plant-derived foods by increasing their carotenoid levels.  相似文献   

4.
5.
Radish plants ( Raphanus sativus L. cv. Saxa treib) were grown in the presence of three different herbicides interfering with the biosynthesis of cyclic carotenoids. The herbicides caused an accumulation of acyclic biosynthetic intermediates. Plants were then irradiated using four different light programs in order to gain more insight into the first steps of carotenoid biosynthesis and their control by light and phytochrome. Plants grown in the dark in the presence of SAN 6706 or aminotriazole accumulated the acyclic intermediate phytoene, and those treated with J 852, the intermediates phytoene, phytofluene and zeta-carotene. In herbicide-treated plants short time irradiation with red light enhanced the formation of phytoene, phytofluene, zeta-carotene or lycopene, consistent with an effect of phytochrome on the early steps of carotenoid biosynthesis. Biosynthesis of cyclic carotenoids was also enhanced by red light in the untreated controls. In amitrole-treated plants formation of β-carotene, but not that of xanthophylls was stimulated by red light. In many cases neither the red light-induced biosynthesis of cyclic carotenoids nor the formation of acyclic intermediates could be prevented by a subsequent irradiation with far-red light. Similar enhancement as with red light was also obtained after treatment with far-red light only. Presented data may be taken as evidence that the biosynthesis and dehydrogenation of phytoene and the cyclization of lycopene are activated by a low threshold of active phytochrome. This may be further supported by the observation that far-red light itself stimulated carotenoid biosynthesis.  相似文献   

6.
Generation of transgenic maize with enhanced provitamin A content   总被引:3,自引:0,他引:3  
Vitamin A deficiency (VAD) affects over 250 million people worldwide and is one of the most prevalent nutritional deficiencies in developing countries, resulting in significant socio-economic losses. Provitamin A carotenoids such as beta-carotene, are derived from plant foods and are a major source of vitamin A for the majority of the world's population. Several years of intense research has resulted in the production of 'Golden Rice 2' which contains sufficiently high levels of provitamin A carotenoids to combat VAD. In this report, the focus is on the generation of transgenic maize with enhanced provitamin A content in their kernels. Overexpression of the bacterial genes crtB (for phytoene synthase) and crtI (for the four desaturation steps of the carotenoid pathway catalysed by phytoene desaturase and zeta-carotene desaturase in plants), under the control of a 'super gamma-zein promoter' for endosperm-specific expression, resulted in an increase of total carotenoids of up to 34-fold with a preferential accumulation of beta-carotene in the maize endosperm. The levels attained approach those estimated to have a significant impact on the nutritional status of target populations in developing countries. The high beta-carotene trait was found to be reproducible over at least four generations. Gene expression analyses suggest that increased accumulation of beta-carotene is due to an up-regulation of the endogenous lycopene beta-cylase. These experiments set the stage for the design of transgenic approaches to generate provitamin A-rich maize that will help alleviate VAD.  相似文献   

7.
The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.  相似文献   

8.
The photoreceptor that mediates blue-light-induced phototropism in dark-grown seedlings of higher plants has not been identified, although the carotenoid zeaxanthin has recently been proposed as the putative chromophore. In the experiments described in this paper, we analyzed phototropism and a blue-light-induced protein phosphorylation that has been genetically and physiologically implicated in phototropism in wild-type maize (Zea mays L.) seedlings and compared the results with those from seedlings that are either carotenoid deficient through a genetic lesion or have been chemically treated to block carotenoid biosynthesis. The blue-light-dependent phototropism and phosphorylation responses of seedlings deficient in carotenoids are the same as those of seedlings containing normal levels of carotenoids. These results and those in the literature make it unlikely that zeaxanthin or any other carotenoid is the chromophore of the blue-light photoreceptor for phototropism or the blue-light-induced phosphorylation related to phototropism.  相似文献   

9.
10.
The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait–locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance–relative transposable element (TE) in intron 1 of DXS2, which encoded a rate‐limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.  相似文献   

11.
The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-Å resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.  相似文献   

12.
Supply of precursors for carotenoid biosynthesis in plants   总被引:2,自引:0,他引:2  
Carotenoids are isoprenoids of industrial and nutritional interest produced by all photosynthetic organisms, including plants. Too often, the metabolic engineering of plant carotenogenesis has been obstructed by our limited knowledge on how the endogenous pathway interacts with other related metabolic pathways, particularly with those involved in the production of isoprenoid precursors. However, recent discoveries are providing new insights into this field. All isoprenoids derive from prenyl diphosphate precursors. In the case of carotenoids, these precursors are produced predominantly by the methylerythritol 4-phosphate (MEP) pathway in plants. This review focuses on the progress in our understanding of how manipulation of the MEP pathway impacts carotenoid biosynthesis and on the discoveries underlining the central importance of coordinating the supply of MEP-derived precursors with the biosynthesis of carotenoids and other derived isoprenoids.  相似文献   

13.
Carotenoids are highly beneficial for human nutrition and health because they provide essential nutrients and important antioxidants in our diets. However, many food crops, especially the major staple crops contain only trace to low amounts of carotenoids. Although significant progress has been made in developing food crops rich in carotenoids by altering the expression of carotenoid biosynthetic genes, in many cases it has proved to be difficult to reach the desired levels of carotenoid enrichment. The recent identification and characterization of a novel gene mutation in cauliflower reveals that creating a metabolic sink to sequester carotenoids is an important mechanism to control carotenoid accumulation in plants. The successful demonstration of increased carotenoid accumulation in association with the formation of sink structures in transgenic crops offers a new and alternative approach to increase carotenoid content. Manipulation of the formation of metabolic sink along with the catalytic activity of the pathway may represent a promising strategy for maximally improving the nutritional quality of food crops.  相似文献   

14.
15.
Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.  相似文献   

16.
The effects of growth temperature on chloroplast responses to norflurazon and amitrole, two herbicides inhibiting carotenogenesis, at phytoene desaturation and lycopene cyclization, respectively, were studied in leaves of maize plants grown at 20 degrees C and 30 degrees C in light. At the lower temperature both chemicals caused severe photo-oxidative damage to chloroplasts. In organelles of norflurazon-treated leaves neither carotenoids nor chlorophylls were detectable and the thylakoid system was dismantled. In organelles of amitrole-treated leaves lycopene was accumulated, but small quantities of beta-carotene and xanthophylls were also produced. Moreover, some chlorophyll and a few inner membranes still persisted, although these latter were disarranged, lacking essential protein components and devoid of photosynthetic function. The increase in plant growth temperature to 30 degrees C did not change the norflurazon effects on carotenoid synthesis and the photo-oxidative damage suffered by chloroplasts. By contrast, in organelles of amitrole-treated leaves a large increase in photoprotective carotenoid biosynthesis occurred, with a consequent recovery of chlorophyll content, ultrastructural organization and thylakoid composition and functionality. This suggests that thermo-modulated steps could exist in the carotenogenic pathway, between the points inhibited by the two herbicides. Moreover it shows that, unlike C(3) species, C(4) species, such as maize, can express a strong tolerance to herbicides like amitrole, when supplied to plants growing at their optimum temperature conditions.  相似文献   

17.
During colonization by arbuscular mycorrhizal (AM) fungi plant roots frequently accumulate two types of apocarotenoids (carotenoid cleavage products). Both compounds, C(14) mycorradicin and C(13) cyclohexenone derivatives, are predicted to originate from a common C(40) carotenoid precursor. Mycorradicin is the chromophore of the "yellow pigment" responsible for the long-known yellow discoloration of colonized roots. The biosynthesis of apocarotenoids has been investigated with a focus on the two first steps of the methylerythritol phosphate (MEP) pathway catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). In Medicago truncatula and other plants the DXS2 isogene appears to be specifically involved in the AM-mediated accumulation of apocarotenoids, whereas in the case of DXR a single gene contributes to both housekeeping and mycorrhizal (apo)carotenoid biosynthesis. Immunolocalization of DXR in mycorrhizal maize roots indicated an arbuscule-associated protein deposition, which occurs late in arbuscule development and accompanies arbuscule degeneration and breakdown. The DXS2 isogene is being developed as a tool to knock-down apocarotenoid biosynthesis in mycorrhizal roots by an RNAi strategy. Preliminary results from this approach provide starting points to suggest a new kind of function for apocarotenoids in mycorrhizal roots.  相似文献   

18.
19.
Carotenoids are a diverse group of tetraterpenoid pigments found in plants, fungi, bacteria and some animals. They play vital roles in plants and provide important health benefits to mammals, including humans. We previously reported the creation of a diverse population of transgenic maize plants expressing various carotenogenic gene combinations and exhibiting distinct metabolic phenotypes. Here we performed an in‐depth targeted mRNA and metabolomic analysis of the pathway to characterize the specific impact of five carotenogenic transgenes and their interactions with 12 endogenous genes in four transgenic lines representing distinct genotypes and phenotypes. We reconstructed the temporal profile of the carotenoid pathway during endosperm development at the mRNA and metabolic levels (for total and individual carotenoids), and investigated the impact of transgene expression on the endogenous pathway. These studies enabled us to investigate the extent of any interactions between the introduced transgenic and native partial carotenoid pathways during maize endosperm development. Importantly, we developed a theoretical model that explains these interactions, and our results suggest genetic intervention points that may allow the maize endosperm carotenoid pathway to be engineered in a more effective and predictable manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号