首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Glycosylphosphatidylinositol-anchored proteins may be concentrated in membrane microdomains (lipid rafts) that are also enriched in cholesterol and sphingolipids. The glycosyl anchor of these proteins is a specific, high affinity receptor for the channel-forming protein aerolysin. We wished to determine if the presence of rafts promotes the activity of aerolysin. Treatment of T lymphocytes with methyl-beta-cyclodextrin, which destroys lipid rafts by sequestering cholesterol, had no measurable effect on the sensitivity of the cells to aerolysin; nor did similar treatment of erythrocytes decrease the rate at which they were lysed by the toxin. We also studied the rate of aerolysin-induced channel formation in liposomes containing glycosylphosphatidylinositol-anchored placental alkaline phosphatase, which we show is a receptor for aerolysin. In liposomes containing sphingolipids as well as glycerophospholipids and cholesterol, most of the enzyme was Triton X-100-insoluble, indicating that it was localized in rafts, whereas in liposomes prepared without sphingolipids, all of the enzyme was soluble. Aerolysin was no more active against liposomes containing rafts than against those that did not. We conclude that lipid rafts do not promote channel formation by aerolysin.  相似文献   

2.
Previous reports have documented that cholesterol supplementations increase cytopathic effects in tissue culture and also intensify in vivo pathogenicities during infection by the enveloped coronavirus murine hepatitis virus (MHV). To move toward a mechanistic understanding of these phenomena, we used growth media enriched with methyl-beta-cyclodextrin or cholesterol to reduce or elevate cellular membrane sterols, respectively. Cholesterol depletions reduced plaque development 2- to 20-fold, depending on the infecting MHV strain, while supplementations increased susceptibility 2- to 10-fold. These various cholesterol levels had no effect on the binding of viral spike (S) proteins to cellular carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors, rather they correlated directly with S-protein-mediated membrane fusion activities. We considered whether cholesterol was indirectly involved in membrane fusion by condensing CEACAMs into "lipid raft" membrane microdomains, thereby creating opportunities for simultaneous binding of multiple S proteins that subsequently cooperate in the receptor-triggered membrane fusion process. However, the vast majority of CEACAMs were solubilized by cold Triton X-100 (TX-100), indicating their absence from lipid rafts. Furthermore, engineered CEACAMs appended to glycosylphosphatidylinositol anchors partitioned with TX-100-resistant lipid rafts, but cells bearing these raft-associated CEACAMs were not hypersensitive to MHV infection. These findings argued against the importance of cholesterol-dependent CEACAM localizations into membrane microdomains for MHV entry, instead suggesting that cholesterol had a more direct role. Indeed, we found that cholesterol was required even for those rare S-mediated fusions taking place in the absence of CEACAMs. We conclude that cholesterol is an essential membrane fusion cofactor that can act with or without CEACAMs to promote MHV entry.  相似文献   

3.
J L Nieva  R Bron  J Corver    J Wilschut 《The EMBO journal》1994,13(12):2797-2804
Enveloped animal viruses, such as Semliki Forest virus (SFV), utilize a membrane fusion strategy to deposit their genome into the cytosol of the host cell. SFV enters cells through receptor-mediated endocytosis, fusion of the viral envelope occurring subsequently from within acidic endosomes. Fusion of SFV has been demonstrated before to be strictly dependent on the presence of cholesterol in the target membrane. Here, utilizing a variety of membrane fusion assays, including an on-line fluorescence assay involving pyrene-labeled virus, we demonstrate that low-pH-induced fusion of SFV with cholesterol-containing liposomal model membranes requires the presence of sphingomyelin or other sphingolipids in the target membrane. The minimal molecular characteristics essential for supporting SFV fusion are encompassed by a ceramide. The action of the sphingolipids is confined to the actual fusion event, cholesterol being necessary and sufficient for low-pH-dependent binding of the virus to target membranes. Complex formation of the sphingolipids with cholesterol is unlikely to be important for the induction of SFV--liposome fusion, as sphingolipids that do not interact appreciably with cholesterol, such as galactosylceramide, effectively support the process. The remarkably low levels of sphingomyelin required for half-maximal fusion (1-2 mole%) suggest that sphingolipids do not play a structural role in the SFV fusion process, but rather act as a cofactor, possibly activating the viral fusion protein in a specific manner.  相似文献   

4.
Recent evidence has suggested that plasma membrane sphingolipids and cholesterol spontaneously coalesce into raft-like microdomains and that specific proteins, including CD4 and some other T-cell signaling molecules, sequester into these rafts. In agreement with these results, we found that CD4 and the associated Lck tyrosine kinase of peripheral blood mononuclear cells and H9 leukemic T cells were selectively and highly enriched in a low-density lipid fraction that was resistant at 0 degrees C to the neutral detergent Triton X-100 but was disrupted by extraction of cholesterol with filipin or methyl-beta-cyclodextrin. In contrast, the CXCR4 chemokine receptor, a coreceptor for X4 strains of human immunodeficiency virus type 1 (HIV-1), was almost completely excluded from the detergent-resistant raft fraction. Accordingly, as determined by immunofluorescence with confocal microscopy, CD4 and CXCR4 did not coaggregate into antibody-induced cell surface patches or into patches of CXCR4 that formed naturally at the ruffled edges of adherent cells. The CXCR4 fluorescent patches were extracted with cold 1% Triton X-100, whereas the CD4 patches were resistant. In stringent support of these data, CD4 colocalized with patches of cholera toxin bound to the raft-associated sphingoglycolipid GM1, whereas CXCR4 did not. Addition of the CXCR4-activating chemokine SDF-1 alpha did not induce CXCR4 movement into rafts. Moreover, binding of purified monomeric gp120 envelope glycoproteins from strains of HIV-1 that use this coreceptor did not stimulate detectable redistributions of CD4 or CXCR4 between their separate membrane domains. However, adsorption of multivalent gp120-containing HIV-1 virion particles appeared to destabilize the local CD4-containing rafts. Indeed, adsorbed HIV-1 virions were detected by immunofluorescence microscopy and were almost all situated in nonraft regions of the cell surface. We conclude that HIV-1 initially binds to CD4 in a raft domain and that its secondary associations with CXCR4 require shifts of proteins and associated lipids away from their preferred lipid microenvironments. Our evidence suggests that these changes in protein-lipid interactions destabilize the plasma membrane microenvironment underlying the virus by at least several kilocalories per mole, and we propose that this makes an important contribution to fusion of the viral and cellular membranes during infection. Thus, binding of HIV-1 may be favored by the presence of CD4 in rafts, but the rafts may then disperse prior to the membrane fusion reaction.  相似文献   

5.
Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.  相似文献   

6.
Platelet interactions with collagen are orchestrated by the presence or the migration of platelet receptor(s) for collagen into lipid rafts, which are specialized lipid microdomains from the platelet plasma membrane enriched in signalling proteins. Electron microscopy shows that in resting platelets, TIIICBP, a receptor specific for type III collagen, is present on the platelet membrane and associated with the open canalicular system, and redistributes to the platelet membrane upon platelet activation. After platelet lysis by 1% Triton X-100 and the separation of lipid rafts on a discontinuous sucrose gradient, TIIICBP is recovered in lipid raft-containing fractions and Triton X-100 insoluble fractions enriched in cytoskeleton proteins. Platelet aggregation, induced by type III collagen, was inhibited after disruption of the lipid rafts by cholesterol depletion, whereas platelet adhesion under static conditions did not require lipid raft integrity. These results indicate that TIIICBP, a platelet receptor involved in platelet interaction with type III collagen, is localized within platelet lipid rafts where it could interact with other platelet receptors for collagen (GP VI and α2β1 integrin) for efficient platelet activation. Pascal Maurice and Ludovic Waeckel have contributed equally to this work.  相似文献   

7.
The assembly and budding of human immunodeficiency virus type 1 (HIV-1) at the plasma membrane are directed by the viral core protein Pr55(gag). We have analyzed whether Pr55(gag) has intrinsic affinity for sphingolipid- and cholesterol-enriched raft microdomains at the plasma membrane. Pr55(gag) has previously been reported to associate with Triton X-100-resistant rafts, since both intracellular membranes and virus-like Pr55(gag) particles (VLPs) yield buoyant Pr55(gag) complexes upon Triton X-100 extraction at cold temperatures, a phenotype that is usually considered to indicate association of a protein with rafts. However, we show here that the buoyant density of Triton X-100-treated Pr55(gag) complexes cannot be taken as a proof for raft association of Pr55(gag), since lipid analyses of Triton X-100-treated VLPs demonstrated that the detergent readily solubilizes the bulk of membrane lipids from Pr55(gag). However, Pr55(gag) might nevertheless be a raft-associated protein, since confocal fluorescence microscopy indicated that coalescence of GM1-positive rafts at the cell surface led to copatching of membrane-bound Pr55(gag). Furthermore, extraction of intracellular membranes or VLPs with Brij98 yielded buoyant Pr55(gag) complexes of low density. Lipid analyses of Brij98-treated VLPs suggested that a large fraction of the envelope cholesterol and phospholipids was resistant to Brij98. Collectively, these results suggest that Pr55(gag) localizes to membrane microdomains that are largely resistant to Brij98 but sensitive to Triton X-100, and these membrane domains provide the platform for assembly and budding of Pr55(gag) VLPs.  相似文献   

8.
The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich in sphingolipids and cholesterol. These insoluble membranes appear to arise from sphingolipid- and cholesterol-rich membrane domains (rafts) in the tightly packed liquid ordered state. Because the degree of lipid insolubility depends on the stability of lipid-lipid interactions relative to lipid-detergent interactions, the quantitative relationship between rafts and detergent-insoluble membranes is complex, and can depend on lipid composition, detergent and temperature. Nevertheless, when used conservatively detergent insolubility is an invaluable tool for studying cellular rafts and characterizing their composition.  相似文献   

9.
Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, shows efficient fusion and exit in the absence of cholesterol due to a single point mutation in the E1 spike subunit, proline 226 to serine. We have here characterized the role of cholesterol in the entry and exit of SIN, an alphavirus quite distantly related to SFV. Growth, primary infection, fusion, and exit of SIN were all dramatically inhibited in cholesterol-depleted cells compared to control cells. Based on sequence differences within the E1 226 region between SFV, srf-3, and SIN, we constructed six SIN mutants with alterations within this region and characterized their cholesterol dependence. A SIN mutant, SGM, that had the srf-3 amino acid sequence from E1 position 224 to 235 showed increases of approximately 100-fold in infection and approximately 250-fold in fusion with cholesterol-depleted cells compared with infection and fusion of wild-type SIN. Pulse-chase analysis demonstrated that SGM exit from cholesterol-depleted cells was markedly more efficient than that of wild-type SIN. Thus, similar to SFV, SIN was cholesterol dependent for both virus entry and exit, and the cholesterol dependence of both steps could be modulated by sequences within the E1 226 region.  相似文献   

10.
Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied.  相似文献   

11.
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.  相似文献   

12.
During measles virus (MV) replication, approximately half of the internal M and N proteins, together with envelope H and F glycoproteins, are selectively enriched in microdomains rich in cholesterol and sphingolipids called membrane rafts. Rafts isolated from MV-infected cells after cold Triton X-100 solubilization and flotation in a sucrose gradient contain all MV components and are infectious. Furthermore, the H and F glycoproteins from released virus are also partly in membrane rafts (S. N. Manié et al., J. Virol. 74:305-311, 2000). When expressed alone, the M but not N protein shows a low partitioning (around 10%) into rafts; this distribution is unchanged when all of the internal proteins, M, N, P, and L, are coexpressed. After infection with MGV, a chimeric MV where both H and F proteins have been replaced by vesicular stomatitis virus G protein, both the M and N proteins were found enriched in membrane rafts, whereas the G protein was not. These data suggest that assembly of internal MV proteins into rafts requires the presence of the MV genome. The F but not H glycoprotein has the intrinsic ability to be localized in rafts. When coexpressed with F, the H glycoprotein is dragged into the rafts. This is not observed following coexpression of either the M or N protein. We propose a model for MV assembly into membrane rafts where the virus envelope and the ribonucleoparticle colocalize and associate.  相似文献   

13.
We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.  相似文献   

14.
Lipid rafts are microdomains enriched in cholesterol and sphingolipids that contain specific membrane proteins. The resistance of domains to extraction by nonionic detergents at 4°C is the commonly used method to characterize these structures that are operationally defined as detergent-resistant membranes (DRMs). Because the selectivity of different detergents in defining membrane rafts has been questioned, we have compared DRMs from human erythrocytes prepared with two detergents: Triton X-100 and C12E8. The DRMs obtained presented a cholesterol/protein mass ratio three times higher than in the whole membrane. Flotillin-2 was revealed in trace amounts in DRMs obtained with C12E8, but it was almost completely confined within the DRM fraction with Triton X-100. Differently, stomatin was found distributed in DRM and non-DRM fractions for both detergents. We have also measured the order parameter (S) of nitroxide spin labels inserted into DRMs by means of electron paramagnetic resonance. The 5- and 16-stearic acid spin label revealed significantly higher S values for DRMs obtained with either Triton X-100 or C12E8 in comparison to intact cells, while the difference in the S values between Triton X-100 and C12E8 DRMs was not statistically significant. Our results suggest that although the acyl chain packing is similar in DRMs prepared with either Triton X-100 or C12E8 detergent, protein content is dissimilar, with flotillin-2 being selectively enriched in Triton X-100 DRMs.  相似文献   

15.
Recent evidence suggests that specialized microdomains, called lipid rafts, exist within plasma membranes. These domains are enriched in cholesterol and sphingolipids and are resistant to non-ionic detergent-extraction at 4 degrees C. They contain specific populations of membrane proteins, and can change their size and composition in response to cellular signals, resulting in activation of signalling cascades. Here, we demonstrate that both the metabotropic gamma-aminobutyric acid receptor B (GABA(B) receptor) and the metabotropic glutamate receptor-1 from rat cerebellum are insoluble in the non-ionic detergent Triton X-100. However, only the GABA(B) receptor associates with raft fractions isolated from rat brain by sucrose gradient centrifugation. Moreover, increasing the stringency of isolation by decreasing the protein : detergent ratio caused an enrichment of the GABA(B) receptor in raft fractions. In contrast, depletion of cholesterol from cerebellar membranes by either saponin or methyl-beta-cyclodextrin treatment, which solubilize known raft markers, also increased the solubility of the GABA(B) receptor. These properties are all consistent with an association of the GABA(B) receptor with lipid raft microdomains.  相似文献   

16.
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor that undergoes constitutive endocytosis and recycling. To identify LRP-1 in lipid rafts, we biotin-labeled cells using a membrane-impermeable reagent and prepared Triton X-100 fractions. Raft-associated proteins were identified in streptavidin affinity-precipitates of the Triton X-100-insoluble fraction. PDGF beta-receptor was identified exclusively in lipid rafts, whereas transferrin receptor was excluded. LRP-1 distributed partially into rafts in murine embryonic fibroblasts (MEFs) and HT 1080 cells, but not in smooth muscle cells and CHO cells. LRP-1 partitioning into rafts was not altered by ligands, including alpha2-macroglobulin, platelet-derived growth factor-BB, and receptor-associated protein (RAP). To examine LRP-1 trafficking between membrane microdomains, we developed a novel method based on biotinylation and detergent fractionation. Association of LRP-1 with rafts was transient; by 15 min, nearly all of the LRP-1 that was initially raft-associated exited this compartment. LRP-1 in the Triton X-100-soluble fraction, which excludes lipid rafts, demonstrated complex kinetics, with phases reflecting import from rafts, endocytosis, and recycling. Potassium depletion blocked LRP-1 endocytosis but did not inhibit trafficking of LRP-1 from rafts into detergent-soluble microdomains. Our data support a model in which LRP-1 transiently associates with rafts but does not form a stable pool. Fluid movement of LRP-1 between microdomains may facilitate its function in promoting the endocytosis of other plasma membrane proteins, such as the urokinase receptor, which localizes in lipid rafts.  相似文献   

17.
A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.  相似文献   

18.
Radeva G  Perabo J  Sharom FJ 《The FEBS journal》2005,272(19):4924-4937
P-glycoprotein (Pgp), a member of the ATP-binding cassette (ABC) superfamily responsible for the ATP-driven extrusion of diverse hydrophobic molecules from cells, is a cause of multidrug resistance in human tumours. Pgp can also operate as a phospholipid and glycosphingolipid flippase, and has been functionally linked to cholesterol, suggesting that it might be associated with sphingolipid-cholesterol microdomains in cell membranes. We have used nonionic detergent extraction and density gradient centrifugation of extracts from the multidrug-resistant Chinese hamster ovary cell line, CH(R)B30, to address this question. Our data indicate that Pgp is localized in intermediate-density membrane microdomains different from classical lipid rafts enriched in Src-family kinases. We demonstrate that Brij-96 can selectively isolate the Pgp domains, separating them from the caveolar and classical lipid rafts. Pgp was found entirely in the Brij-96-insoluble domains, and only partially in the Triton X-100-insoluble membrane microdomains. We studied the sensitivity of these domains to cholesterol removal, as well as their relationship to GM(1) ganglioside- and caveolin-1-enriched caveolar domains. We found that the buoyant density of the Brij-96-based Pgp-containing microdomains was sensitive to cholesterol removal by methyl-beta-cyclodextrin. The Brij-96 domains retained their structural integrity after cholesterol depletion while, in contrast, the Triton X-100-based caveolin-1/GM(1) microdomains did not. Using confocal fluorescence microscopy, we determined that caveolin-1 and GM(1) colocalized, while Pgp and caveolin-1, or Pgp and GM(1), did not. Our results suggest that Pgp does not interact directly with caveolin-1, and is localized in intermediate-density domains, distinct from classical lipid rafts and caveolae, which can be isolated using Brij-96.  相似文献   

19.
Epithelial cells that fulfil high-throughput digestive/absorptive functions, such as small intestinal enterocytes and kidney proximal tubule cells, are endowed with a dense apical brush border. It has long been recognized that the microvillar surface of the brush border is organized in cholesterol/sphingolipid-enriched membrane microdomains commonly known as lipid rafts. More recent studies indicate that microvillar rafts, in particular those of enterocytes, have some unusual properties in comparison with rafts present on the surface of other cell types. Thus, microvillar rafts are stable rather than transient/dynamic, and their core components include glycolipids and the divalent lectin galectin-4, which together can be isolated as "superrafts", i.e., membrane microdomains resisting solubilization with Triton X-100 at physiological temperature. These glycolipid/lectin-based rafts serve as platforms for recruitment of GPI-linked and transmembrane digestive enzymes, most likely as an economizing effort to secure and prolong their digestive capability at the microvillar surface. However, in addition to microvilli, the brush border surface also consists of membrane invaginations between adjacent microvilli, which are the only part of the apical surface sterically accessible for membrane fusion/budding events. Many of these invaginations appear as pleiomorphic, deep apical tubules that extend up to 0.5-1 microm into the underlying terminal web region. Their sensitivity to methyl-beta-cyclodextrin suggests them to contain cholesterol-dependent lipid rafts of a different type from the glycolipid-based rafts at the microvillar surface. The brush border is thus an example of a complex membrane system that harbours at least two different types of lipid raft microdomains, each suited to fulfil specialized functions. This conclusion is in line with an emerging, more varied view of lipid rafts being pluripotent microdomains capable of adapting in size, shape, and content to specific cellular functions.  相似文献   

20.
Semliki Forest virus (SFV) utilizes a membrane fusion strategy to introduce its genome into the host cell. After binding to cell-surface receptors, virus particles are internalized through receptor-mediated endocytosis and directed to the endosomal cell compartment. Subsequently, triggered by the acid pH in the lumen of the endosomes, the viral envelope fuses with the endosomal membrane. As a result of this fusion reaction the viral RNA gains access to the cell cytosol. Low-pH-induced fusion of SFV, in model systems as well as in cells, has been demonstrated previously to be strictly dependent on the presence of cholesterol in the target membrane. In this paper, we show that fusion of SFV with cholesterol-containing liposomes depends on sphingomyelin (SM) or other sphingolipids in the target membrane, ceramide representing the sphingolipid minimally required for mediating the process. The action of the sphingolipid is confined to the actual fusion event, cholesterol being necessary and sufficient tor low-pH-dependent binding of the virus to target membranes. The 3-hydroxyl group on the sphingosine backbone plays a key role in the SFV fusion reaction, since 3-deoxy-sphingomyelin does not support the process. This, and the remarkably low levels of sphingolipid required for half-maximal fusion (1–2 mol%), suggest that the sphingolipid does not play a structural role in SFV fusion, but rather acts as a co-factor, possibly through activation of the viral fusion protein. Domain formation between cholesterol and sphingolipid, although it may facilitate SFV fusion, is unlikely to play a crucial role in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号