首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

3.
Serotonin, a pineal hormone in mammals, is found in a wide range of plant species at detection levels from a few nanograms to a few milligrams, and has been implicated in several physiological roles, such as flowering, morphogenesis and adaptation to environmental changes. Serotonin synthesis requires two enzymes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), with TDC serving as a rate-limiting step because of its high Km relation to the substrate tryptophan (690 µM) and its undetectable expression level in control plants. However, T5H and downstream enzymes, such as serotonin N-hydroxycinnamoyl transferase (SHT), have low Km values with corresponding substrates. This suggests that the biosynthesis of serotonin or serotonin-derived secondary metabolites is restricted to cellular stages when high tryptophan levels are present.Key words: feruloylserotonin, serotonin, tryptamine, tryptamine 5-hydroxylase, tryptophan, tryptophan biosynthesis, tryptophan decarboxylaseSerotonin is found in a broad range of plants and is abundant in reproductive organs, such as fruits and seeds.13 Even though many physiological roles for serotonin in plants have been proposed,27 its actual roles have yet to be examined in detail using molecular, biochemical and genetic approaches. In plants, serotonin is synthesized by two enzymes: tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H). TDC decarboxylates tryptophan into tryptamine, after which T5H hydroxylates tryptamine into serotonin.810 TDC expresses at an undetectable level in rice leaves, whereas T5H expresses constitutively.11,12  相似文献   

4.
Tryptophan decarboxylase (TDC) converts tryptophan (Trp) into tryptamine, consequently increasing the metabolic flow of tryptophan derivatives into the production of secondary metabolites such as indole alkaloids. We inserted an expression cassette containing OsTDC, a putative tryptophan decarboxylase gene from rice, into an expression plasmid vector containing OASA1D, the feedback‐resistant anthranilate synthase alpha‐subunit mutant (OASA1D). Overexpression of OASA1D has been reported to significantly increase Trp levels in rice. The co‐expression of OsTDC and OASA1D in rice calli led to almost complete depletion of the Trp pool and a consequent increase in the tryptamine pool. This indicates that TDC inactivity is a contributory factor for the accumulation of Trp in rice transgenics overexpressing OASA1D. Metabolic profiling of the calli expressing OsTDC and OASA1D revealed the accumulation of serotonin and serotonin‐derived indole compounds (potentially pharmacoactive β‐carbolines) that have not been reported from rice. Rice calli overexpressing OASA1D:OASA1D is a novel system for the production of significant amounts of pharmacologically useful indole alkaloids in rice.  相似文献   

5.
6.
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal.  相似文献   

7.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

8.
171 mutations conferring resistance to the indole analogue 5-fluoroindole (5 FI) were isolated in the filamentous basidiomycete fungus Coprinus cinereus. 5 FI is thought to be toxic because it is converted intracellularly to 5-fluorotryptophan (5 FT) which feedback inhibits the first enzyme of the tryptophan biosynthetic pathway, anthranilate synthase. Mutations were assigned to five loci, iar-1-iar-5 on the basis of functional analyses and mapping experiments. iar-5 mutations mapped in the anthranilate synthase structural gene and gave rise to an enzyme feedback resistant to tryptophan and its analogue. Mutants at other loci had regulatory changes. iar-1 and iar-3 mutants had elevated levels of two pathway enzymes measured (anthranilate synthase and tryptophan synthase) and were cross resistant to analogues of other aromatic amino acids suggesting that the entire aromatic pathway was derepressed. iar-3 mutants were unable to degrade metabolically derived typtophan to anthranilic acid unlike iar-1 mutants which excreted high levels of anthranilic acid. iar-2 mutants appeared to have a constitutive degradative pathway. iar-4 mutants had a blocked degradative pathway and unusual levels of tryptophan pathway enzymes.Abbreviations 5 FI 5-fluoroindole - 5 FT 5-fluorotryptophan - pFP para-fluorophenylalanine - mFT meta-fluoro-tyrosine  相似文献   

9.
Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits.  相似文献   

10.
The free tryptophan pool and the levels of two enzymes of tryptophan biosynthesis (anthranilate synthase and indoleglycerolphosphate synthase) have been determined in a wild type strain of Saccharomyces cerevisiae and in mutants with altered regulatory properties.The tryptophan pool of wild type cells growing in minimal medium is 0.07 mole per g dry weight. Addition of anthranilate, indole or tryptophan to the medium produces a fifteen- to forty-fold increase in tryptophan pool, but causes no repression of the biosynthetic enzymes. Inclusion of 5-methyltryptophan in the growth medium causes a reduction in growth rate and a derepression of the biosynthetic enzymes, and this is shown here not to be correlated with a decrease in the free tryptophan pool.Mutants with an altered anthranilate synthase showing decreased sensitivity to inhibition by l-tryptophan or by the analogue dl-5-methyltryptophan have a tryptophan pool far higher than the wild type strain, but no repression of indoleglycerolphosphate synthase was observed. Mutants with an anthranilate synthase more sensitive to tryptophan inhibition show a slightly reduced tryptophan pool, but no derepression of indoleglycerolphosphate synthase was found.A mutant with constitutively derepressed levels of the biosynthetic enzymes shows a considerably increased tryptophan pool. Addition of 5-methyltryptophan to the growth medium of non-derepressible mutants causes a decrease in growth rate accompanied by a decrease in the tryptophan pool.Abbreviations CDRP 1-(o-carboxyphenylamino)-1-deoxyribulosephosphate - paba paraaminobenzoic acid - PRA N-(5-phosphoribosyl)-anthranilate - tRNA transfer ribonucleic acid; trp1 to trp5 refer to the structural genes for corresponding tryptophan biosynthetic enzymes  相似文献   

11.
12.
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non‐catalytic small subunit (GPPS‐SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS‐SSU was over‐expressed in tomato fruits under the control of the fruit ripening‐specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co‐expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS‐SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co‐expression of snapdragon GPPS‐SSU with the O. basilicum α–zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui‐ and monoterpene synthase activities resulted in increased levels of ZIS‐derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re‐direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.  相似文献   

13.
14.
Huang CY  Lee CY  Wu HC  Kuo MH  Lai CY 《Microbial ecology》2008,56(4):696-703
The endosymbiotic bacterium Buchnera provides its aphid host with essential amino acids. Buchnera is typical of intracellular symbiotic and parasitic microorganisms in having a small effective population size, which is believed to accelerate genetic drift and reduce the stability of gene products. It is hypothesized that Buchnera mitigates protein instability with an increased production of the chaperonins GroESL. In this paper, we report the expression and functional analysis of trpE, a plasmid-borne fast-evolving gene encoding the tryptophan biosynthesis enzyme anthranilate synthase. We overcame the problem of low enzyme stability by using an anthranilate synthase-deficient mutant of E. coli as the expression host and the method of genetic complementation for detection of the enzyme activity. We showed that the Buchnera anthranilate synthase was only weakly active at the temperature of 26°C but became inactive at the higher temperatures of 32°C and 37°C and that the coexpression with chaperonin genes groESL of E. coli enhanced the function of the Buchnera enzyme. These findings are consistent with the proposed role of groESL in the Buchnera–aphid symbiosis.  相似文献   

15.
The cell pools of tryptophan and anthranilate, the excretion of indole-containing metabolites, and the levels of the enzymes of aromatic amino acid biosynthesis have been determined in regulatory mutants of Hansenula henricii. The strain Hg 48-2-M8 produces indoles with a maximum specific productivity of 0.37 mg/g · h at a maximum specific production value of 21 mg/g dry cell weight. This methyl-tryptophan resistant mutant possess an anthranilate synthase, whose inhibition by tryptophan is reduced. The best conditions for production of indoles are the following: 1% glucose as C-source; ammonium as N-source; pH value smaller than 4. We found that under various growth conditions 25–60% synthesized indole-containing metabolites consists of tryptophan.  相似文献   

16.
Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.  相似文献   

17.
The anthracnose fungus, Colletotrichum gloeosporioides, was previously shown to have an incompatible interaction with ripe-red fruit of pepper (Capsicum annuum). However, the fungus had a compatible interaction with unripe-mature-green fruit. Using mRNA differential display, we isolated and characterized a PepCYP gene expressed in the incompatible interaction. The PepCYP gene encodes a protein homologous to cytochrome P450 proteins containing a heme-binding domain. The expression level of PepCYP is higher in the incompatible interaction than in the compatible interaction, and then remains elevated in the incompatible interaction. In the compatible interaction, the expression of PepCYP is transient. The induction of PepCYP gene is up-regulated by wounding or jasmonic acid treatment during ripening. Analysis of PepCYP expression by in situ hybridization shows that the accumulation of PepCYP mRNA is localized in the epidermal cell layers, but not in the cortical cell layers. An examination of transverse sections of the fruits inoculated with the fungus shows that the fungus invades and colonizes the epidermal cell layers of the unripe fruit at 24 and 72 h after inoculation, respectively, but not those of the ripe fruit. These results suggest that the PepCYP gene product plays a role in the defense mechanism when the fungus invades and colonizes the epidermal cells of fruits in the incompatible interaction during the early fungal infection process.  相似文献   

18.
19.
The trpE gene of Thermus thermophilus HB8 was cloned by complementation of an Escherichia coli tryptophan auxotroph. The E. coli harboring the cloned gene produced the anthranilate synthase I, which was heat-stable and enzymatically active at higher temperature. The nucleotide sequence of the trpE gene and its flanking regions was determined. The trpE gene was preceded by an attenuator-like structure and followed by the trpG gene, with a short gap between them. No other gene essential for tryptophan biosynthesis was observed after the trpG gene. The amino-acid sequences of the T. themophilus anthranilate synthase I and II deduced from the nucleotide sequence were compared with those of other organisms.  相似文献   

20.
We developed a transient expression assay for Madagascar periwinkle (Catharanthus roseus [L.] G. Don.) that is based on vacuum infiltration of intact leaves with recombinantAgrobacterium tumefaciens. This simple and rapid technique was used to overexpresstryptophan decarboxylase (tdc) andstrictosidine synthase (str1) genes, which encode 2 key enzymes of the terpenoid indole alkaloid (TIA) biosynthesis pathway. Immunoblot analysis of crude leaf extracts demonstrated that recombinant TDC and STR1 accumulated to detectable levels when targeted to their native subcellular compartments (i.e., the cytosol and vacuole, respectively) or to the chloroplast. In this article, we discuss possible applications of the transient assay in studies on the overexpression of enzymes of the TIA pathway in intactC. roseus leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号