首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
We have systematically examined the domain composition across a comprehensive set of tissue-specific, midrange and housekeeping genes as defined by their mode of expression in 52 normal mouse tissues. We show a definite correlation between the number of domains and the degree of tissue specificity. This trend is further supported by a novel analysis involving the time of origin of each domain. Genes containing metazoan-specific domains are more prevalent in signal transduction and cell-communication pathways, and are depleted in primary metabolism. Our analyses suggest that highly modular gene products have been recruited for tissue-specific functions that are required in complex organisms.  相似文献   

3.

Background

The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates.

Methodology/Principal Findings

We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates.

Conclusions

The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.  相似文献   

4.
MOTIVATION: Microarrays have become a central tool in biological research. Their applications range from functional annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar expression patterns. This translates to the algorithmic problem of clustering genes based on their expression patterns. RESULTS: We present a novel clustering algorithm, called CLICK, and its applications to gene expression analysis. The algorithm utilizes graph-theoretic and statistical techniques to identify tight groups (kernels) of highly similar elements, which are likely to belong to the same true cluster. Several heuristic procedures are then used to expand the kernels into the full clusters. We report on the application of CLICK to a variety of gene expression data sets. In all those applications it outperformed extant algorithms according to several common figures of merit. We also point out that CLICK can be successfully used for the identification of common regulatory motifs in the upstream regions of co-regulated genes. Furthermore, we demonstrate how CLICK can be used to accurately classify tissue samples into disease types, based on their expression profiles. Finally, we present a new java-based graphical tool, called EXPANDER, for gene expression analysis and visualization, which incorporates CLICK and several other popular clustering algorithms. AVAILABILITY: http://www.cs.tau.ac.il/~rshamir/expander/expander.html  相似文献   

5.
6.
7.
8.
9.
Outcome signature genes in breast cancer: is there a unique set?   总被引:9,自引:0,他引:9  
MOTIVATION: Predicting the metastatic potential of primary malignant tissues has direct bearing on the choice of therapy. Several microarray studies yielded gene sets whose expression profiles successfully predicted survival. Nevertheless, the overlap between these gene sets is almost zero. Such small overlaps were observed also in other complex diseases, and the variables that could account for the differences had evoked a wide interest. One of the main open questions in this context is whether the disparity can be attributed only to trivial reasons such as different technologies, different patients and different types of analyses. RESULTS: To answer this question, we concentrated on a single breast cancer dataset, and analyzed it by a single method, the one which was used by van't Veer et al. to produce a set of outcome-predictive genes. We showed that, in fact, the resulting set of genes is not unique; it is strongly influenced by the subset of patients used for gene selection. Many equally predictive lists could have been produced from the same analysis. Three main properties of the data explain this sensitivity: (1) many genes are correlated with survival; (2) the differences between these correlations are small; (3) the correlations fluctuate strongly when measured over different subsets of patients. A possible biological explanation for these properties is discussed. CONTACT: eytan.domany@weizmann.ac.il SUPPLEMENTARY INFORMATION: http://www.weizmann.ac.il/physics/complex/compphys/downloads/liate/  相似文献   

10.
11.
12.
基因组织特异性相关研究进展   总被引:1,自引:0,他引:1  
研究基因的组织特异性是了解生命活动进程和组织功能的重要一步.尽管对于看家基因和组织特异基因的研究由来已久,但是对于它们仍缺少统一的定义方式和检测方法.在定义方式上,可以从基因的组织表达数和在各组织间的表达变化情况来分别定义看家基因和组织特异基因.通常将在大多数正常组织中有表达,且表达水平较稳定的基因称为看家基因,而将在一个或少数组织中优势表达的基因定义为组织特异基因或组织选择基因.在检测方法上,高通量实验技术,包括基因芯片、RNA-seq和质谱技术等已成为检测基因组织特异性的主要方法.通过比较多个典型研究的实验结果,发现不同检测方法的覆盖度和灵敏度存在很大差异,其中RNA-seq技术最为灵敏,获得的看家基因数目最多,质谱技术检测出来的看家基因和组织特异基因数目较少,而基因芯片方法给出的多个检测结果间差别较大.尽管不同的定义方式和检测方法所导致的看家基因(或组织特异基因)的集合不完全一致,但不同的看家基因数据集(或组织特异基因)却展现出非常一致的功能和特性.看家基因通常实现所有组织和细胞都必须的基本功能,而看家基因与其他组织表达基因间的相互作用以及组织特异基因间的相互作用则实现了组织的特有功能.同时,基因的组织特异性与疾病之间具有密切联系,相比其他基因,看家基因更有可能成为癌基因,而组织特异基因则更有希望发展成为药物靶标.  相似文献   

13.
Evidence based selection of housekeeping genes   总被引:2,自引:0,他引:2  
For accurate and reliable gene expression analysis, normalization of gene expression data against housekeeping genes (reference or internal control genes) is required. It is known that commonly used housekeeping genes (e.g. ACTB, GAPDH, HPRT1, and B2M) vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel candidate housekeeping genes (e.g. RPS13, RPL27, RPS20 and OAZ1) with enhanced stability among a multitude of different cell types and varying experimental conditions. None of the commonly used housekeeping genes were present in the top 50 of the most stable expressed genes. In addition, using 2,543 diverse mouse gene array samples we were able to confirm the enhanced stability of the candidate novel housekeeping genes in another mammalian species. Therefore, the identified novel candidate housekeeping genes seem to be the most appropriate choice for normalizing gene expression data.  相似文献   

14.
15.
New insights into the biology of cytokinin degradation   总被引:9,自引:0,他引:9  
A survey of recent results is presented concerning the role of cytokinin degradation in plants, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. An overview of Arabidopsis CKX gene expression suggests that their differential regulation by biotic and abiotic factors contributes significantly to functional specification. Here, we show using reporter gene and semiquantitative RT-PCR analyses regulation of individual CKX genes by cytokinin, auxin, ABA, and phosphate starvation. Partially overlapping expression domains of CKX genes and cytokinin-synthesizing IPT genes in meristematic tissues and endo-reduplicating cells lend support for a locally restricted function of cytokinin. On the other hand, their expression in vascular tissue suggests a function in controlling transported cytokinin. Recent studies led to a model for the biochemical reaction mechanism of CKX-mediated catalysis, which was refined on the basis of the three-dimensional enzyme structure. Last but not least, the developmental functions of CKX enzymes are addressed. The recent identification of the rice OSCKX2 gene as an important novel breeding tool is highlighted. Together the results corroborate the relevance of metabolic control in determining cytokinin activity.  相似文献   

16.
17.
Microsatellites are important for research in both basic and applied sciences. Understanding how genes containing microsatellites are expressed and regulated in different tissues and developmental stages is a fundamental and challenging question. However, there has been limited study of differential expression of genes containing microsatellites in different plant tissues and developmental stages. We studied microsatellite-containing gene expression profiles in 16 different tissues and at different developmental stages in pepper (Capsicum annuum L.). Results indicated that tissue-specific genes contained more dinucleotide microsatellites, and housekeeping genes contained more trinucleotide microsatellites. Differential expression patterns of microsatellite-containing genes indicated that, in the longer term, development of allele-specific markers for genes controlling agronomic traits will be useful for advancing the science of plant breeding. This is the first report on differential expression of microsatellite-containing genes within tissues and developmental stages in pepper.  相似文献   

18.
19.
Specific gene expression patterns in liver cirrhosis   总被引:1,自引:0,他引:1  
Liver cirrhosis (LC) is a complex disease that can develop into hepatocellular carcinoma (HCC). In an effort to investigate genetic differences between LC and HCC, we used cDNA microarray analysis to characterize the gene expression profiles in LC and HCC tissues. Consistent differences were observed among the expression patterns in LC, HCC, and normal liver tissues. Interestingly, the expression patterns of LC without tumor association (LCT) were also readily distinguished from those of LC tissues near hepatic tumor tissues (near-tumor tissue, NTT). Moreover, 25 cirrhosis-specific genes could be used to divide the NTT samples into two groups: inflammatory active cirrhosis (NTTa) and inflammatory inactive cirrhosis (NTTi). We found that NTTa samples showed gene expression patterns similar to those of the LCT and HCC groups, whereas the expression patterns of the NTTi group were significantly different from those of the LCT, NTTa, and HCC groups. Finally, we selected two of the 25 LC-specific genes and showed that these markers could be used to successfully discriminate among the different LC subtypes. Collectively, these novel results allow the identification of new genetic subgroups of LC and provide new candidate genes for use as early markers for active cirrhosis and HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号