首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hulme AE  Bogerd HP  Cullen BR  Moran JV 《Gene》2007,390(1-2):199-205
The non-LTR retrotransposon LINE-1 (L1) comprises  17% of the human genome, and the L1-encoded proteins can function in trans to mediate the retrotransposition of non-autonomous retrotransposons (i.e., Alu and probably SVA elements) and cellular mRNAs to generate processed pseudogenes. Here, we have examined the effect of APOBEC3G and APOBEC3F, cytidine deaminases that inhibit Vif-deficient HIV-1 replication, on Alu retrotransposition and other L1-mediated retrotransposition processes. We demonstrate that APOBEC3G selectively inhibits Alu retrotransposition in an ORF1p-independent manner. An active cytidine deaminase site is not required for the inhibition of Alu retrotransposition and the resultant integration events lack G to A or C to T hypermutation. These data demonstrate a differential restriction of L1 and Alu retrotransposition by APOBEC3G, and suggest that the Alu ribonucleoprotein complex may be targeted by APOBEC3G.  相似文献   

2.
Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3' transduction of adjacent genomic sequences, (b) approximately 25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.  相似文献   

3.
Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of ~18 kb of sequence from the human genome and ~15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.  相似文献   

4.
L1 elements are the only active autonomous retrotransposons in the human genome. The nonautonomous Alu elements, as well as processed pseudogenes, are retrotransposed by the L1 retrotransposition proteins working in trans. Here, we describe another repetitive sequence in the human genome, the SVA element. Our analysis reveals that SVA elements are currently active in the human genome. SVA elements, like Alus and L1s, occasionally insert into genes and cause disease. Furthermore, SVA elements are probably mobilized in trans by active L1 elements.  相似文献   

5.
6.
7.
8.
9.
10.
11.
ERCC1/XPF limits L1 retrotransposition   总被引:1,自引:0,他引:1  
Retrotransposons are currently active in the human and mouse genomes contributing to novel disease mutations and genomic variation via de novo insertions. However, little is known about the interactions of non-long terminal repeat (non-LTR) retrotransposons with the host DNA repair machinery. Based on the model of retrotransposition for the human and mouse LINE-1 element, one likely intermediate is an extension of cDNA that is heterologous to the genomic target, a flap intermediate. To determine whether a human flap endonuclease could recognize and process this potential intermediate, the genetic requirement for the ERCC1/XPF heterodimer during LINE-1 retrotransposition was characterized. Reduction of XPF in human cells increased retrotransposition whereas complementation of ERCC1-deficiency in hamster cells reduced retrotransposition. These results demonstrate for the first time that DNA repair enzymes act to limit non-LTR retrotransposition and may provide insight into the genetic instability phenotypes of ercc1 and xpf individuals.  相似文献   

12.
Retrotransposons are mobile genetic elements, and their mobility can lead to genomic instability. Retrotransposon insertions are associated with a diverse range of sporadic diseases, including cancer. Thus, it is not a surprise that multiple host defense mechanisms suppress retrotransposition. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is a mechanism for restricting viral infections during the interferon antiviral response. Here, we investigated a potential role for the OAS-RNase L system in the restriction of retrotransposons. Expression of wild type (WT) and a constitutively active form of RNase L (NΔ385), but not a catalytically inactive RNase L mutant (R667A), impaired the mobility of engineered human LINE-1 (L1) and mouse intracisternal A-type particle retrotransposons in cultured human cells. Furthermore, WT RNase L, but not an inactive RNase L mutant (R667A), reduced L1 RNA levels and subsequent expression of the L1-encoded proteins (ORF1p and ORF2p). Consistently, confocal immunofluorescent microscopy demonstrated that WT RNase L, but not RNase L R667A, prevented formation of L1 cytoplasmic foci. Finally, siRNA-mediated depletion of endogenous RNase L in a human ovarian cancer cell line (Hey1b) increased the levels of L1 retrotransposition by ∼2-fold. Together, these data suggest that RNase L might function as a suppressor of structurally distinct retrotransposons.  相似文献   

13.
Phylogenetically new insertions of repetitive sequences may contribute to genome evolution by altering the function of preexisting proteins. One example is the SVA sequence, which forms the C-terminal coding exon of the human leptin receptor isoform 219.1. Here, we report that the SVA insertion into the LEPR locus has occurred after divergence of humans and chimpanzees. The SVA element was inserted into a Hal-1/LINE element present in all monkeys and apes tested. Structural features point toward an integration event that was mediated by the L1 protein machinery acting in trans. Thus, our findings add evidence to the hypothesis that retrotransposition events are a driving force in genomic evolution and that the presence or absence of specific retroelements are one distinguishing feature that separates humans from chimpanzees.  相似文献   

14.
15.
Song M  Boissinot S 《Gene》2007,390(1-2):206-213
LINE-1 (L1) retrotransposons constitute the most successful family of autonomous retroelements in mammals and they represent at least 17% of the size of the human genome. L1 insertions have occasionally been recruited to perform a beneficial function but the vast majority of L1 inserts are either neutral or deleterious. The basis for the deleterious effect of L1 remains a matter of debate and three possible mechanisms have been suggested: the direct effect of L1 inserts on gene activity, genetic rearrangements caused by L1-mediated ectopic recombination, or the retrotransposition process per se. We performed a genome-wide analysis of the distribution of L1 retrotransposons relative to the local recombination rate and the age and length of the elements. The proportion of L1 elements that are longer than 1.2 Kb is higher in low-recombining regions of the genome than in regions with a high recombination rate, but the genomic distributions of full-length elements (i.e. elements capable of retrotransposition) and long truncated elements were indistinguishable. We also found that the intensity of selection against long elements is proportional to the replicative success of L1 families. This suggests that the deleterious effect of L1 elements results principally from their ability to mediate ectopic recombination.  相似文献   

16.
17.
Platt RN  Ray DA 《Gene》2012,500(1):47-53
The typical mammalian genome is dominated by two types of transposable elements (TEs), the autonomous and non-autonomous non-LTR retrotransposons, i.e. LINEs and SINEs, and with few exceptions there is a sole active LINE family (L1). During an ongoing investigation of TEs in rodents we determined that overall transposon activity has been steadily declining in Spermophilus tridecemlineatus. More specifically, the typically ubiquitous L1 activity of mammals has decreased drastically within the last 26MY. Indeed, only three L1 insertions with intact ORF1 sequences were readily identifiable and no intact ORF2 sequences were identified. The last L1 and SINE insertions date to ~5.3MYA and 4MYA, respectively. Based on our inability to computationally identify recently inserted L1 elements we suggest that S. tridecemlineatus is experiencing a quiescence or extinction of non-LTR retrotransposon activity. Such a finding represents only the fourth instance of a loss of non-LTR retrotransposon activity identified in mammals and, as such, represents an important additional data point to guide our understanding of LINE dynamics in eutherians.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号