首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A thermophilic coccoid methanogenic bacterium, strain TCI, that grew optimally around 55° C was isolated with 2-propanol as hydrogen donor for methanogenesis from CO2. H2, formate or 2-butanol were used in addition. Each secondary alcohol was oxidized to its ketone. Growth occurred in defined freshwater as well as salt (2% NaCl, w/v) medium. Acetate was required as carbon source, and 4-aminobenzoate and biotin as growth factors. A need for molybdate or alternatively tungstate was shown.Strain TCI was further characterized together with two formerly isolated mesophilic secondary alcohol-utilizing methanogens, the coccoid strain CV and the spirilloid strain SK. The guanine plus cytosine content of the DNA of the three strains was 55,47, and 39 mol%, respectively. Determination of the molecular weights of the methylreductase subunits and sequencing of ribosomal 16S RNA of strains TCI and CV revealed close relationships to the genus Methanogenium. The new isolate TCI is classified as a strain of the existing species, Methanogenium thermophilum (thermophilicum). For strain CV, that uses ethanol or 1-propanol in addition, a classification as new species, Methanogenium organophilum, is proposed. Strain SK is affiliated with the existing species, Methanospirillum hungatei. The ability to use secondary alcohols was also tested with described species of methanogens. Growth with secondary alcohols was observed with Methanogenium marisnigri, Methanospirillum hungatei strain GP1 and Methanobacterium bryantii, but not with Methanospirillum strains JF1 and M1h, Methanosarcina barkeri, Methanococcus species or thermophilic strains or species other than the new isolate TCI.  相似文献   

2.
Three strains of new mesophilic homoacetogenic bacteria were enriched and isolated from sewage sludge and from marine sediment samples with methoxyacetate as sole organic substrate in a carbonate-buffered medium under anoxic conditions. Two freshwater isolates were motile, Gram-positive, non-sporeforming rods. The marine strain was an immotile, Gram-positive rod with a slime capsula. All strains utilized only the methyl residue of methoxyacetate and released glycolic acid. They also fermented methyl groups of methoxylated aromatic compounds and of betaine to acetate with growth yields of 6–10 g dry matter per mol methyl group. H2/CO2, formate, methanol, hexamethylene tetramine, as well as fructose, numerous organic acids, glycerol, ethylene glycol, and glycol ethers were fermented to acetate as well. High activities of carbon monoxide dehydrogenase (0.4–2.2 U x mg protein–1) were detected in all three isolates. The guanine-plus-cytosine-content of the DNA of the freshwater isolates was 42.7 and 44.4 mol %, with the marine isolate it was 47.7 mol %. The freshwater strains were assigned to the genus Acetobacterium as new strains of the species A. carbinolicum. One freshwater isolate, strain KoMac1, was deposited with the Deutsche Sammlung von Mikroorganismen GmbH, Braunschweig, under the number DSM 5193.  相似文献   

3.
A new type of sulfate-reducing bacteria with ellipsoidal to lemon-shaped cells was regularly enriched from anaerobic freshwater and marine mud samples when mineral media with propionate and sulfate were used. Three strains (1pr3, 2pr4, 3pr10) were isolated in pure culture. Propionate, lactate and alcohols were used as electron donors and carbon sources. Growth on H2 required acetate as a carbon source in the presence of CO2. Stoichiometric measurements revealed that oxidation of propionate was incomplete and led to acetate as an endproduct. Instead of sulfate, strain 1pr3 was shown to reduce sulfite and thiosulfate to H2S; nitrate also served as electron acceptor and was reduced to ammonia. With lactate or pyruvate, all three strains were able to grow without external electron acceptor and formed propionate and acetate as fermentation products. None of the strains contained desulfoviridin. In strain 1pr3 cytochromes of the b- and c-type were identified. Strain 1pr3 is described as type strain of the new species and genus, Desulfobulbus propionicus.  相似文献   

4.
The use of F420 as a parameter for growth or metabolic activity of methanogenic bacteria was investigated. Two representative species of methanogens were grown in batch culture: Methanobacterium bryantii (strain M.o.H.G.) on H2 and CO2, and Methanosarcina barkeri (strain Fusaro) on methanol or acetate. The total intracellular content of coenzyme F420 was followed by high-resolution fluorescence spectroscopy. F420 concentration in M. bryantii ranged from 1.84 to 3.65 μmol · g of protein−1; and in M. barkeri grown with methanol it ranged from 0.84 to 1.54 μmol · g−1 depending on growth conditions. The content of F420 in M. barkeri was influenced by a factor of 2 depending on the composition of the medium (minimal or complex) and by a factor of 3 to 4 depending on whether methanol or acetate was used as the carbon source. A comparison of F420 content with protein, cell dry weight, optical density, and specific methane production rate showed that the intracellular content of F420 approximately followed the increase in biomass in both strains. In contrast, no correlation was found between specific methane production rate and intracellular F420 content. However, qCH4(F420), calculated by dividing the methane production rate by the coenzyme F420 concentration, almost paralleled qCH4(protein). These results suggest that F420 may be used as a specific parameter for estimating the biomass, but not the metabolic activity, of methanogens; hence qCH4(F420) determined in mixed populations with complex carbon substrates must be considered as measure of the actual methanogenic activity and not as a measure of potential activity.  相似文献   

5.
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   

6.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 μmol of H2 per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H2 concentration was ≤2 μmol/liter. The fractions of 14CO2 produced from [14C]methanol and 2-[14C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 μmol of sulfate per 100 μmol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H2 decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H2 transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO2 formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth.  相似文献   

7.
A newly isolated methanogen, strain DMS1T, is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1T are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1T differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1T is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1T is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1T can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems.  相似文献   

8.
Five strains of rod-shaped, Gram-negative, non-sporing, strictly anaerobic bacteria were isolated from limnic and marine mud samples with gallic acid or phloroglucinol as sole substrate. All strains grew in defined mineral media without any growth factors; marine isolates required salt concentrations higher than 1% for growth, two freshwater strains only thrived in freshwater medium. Gallic acid, pyrogallol, 2,4,6-trihydroxybenzoic acid, and phloroglucinol were the only substrates utilized and were fermented stoichiometrically to 3 mol acetate (and 1 mol CO2) per mol with a growth yield of 10g cell dry weight per mol of substrate. Neither sulfate, sulfur, nor nitrate were reduced. The DNA base ratio was 51.8% guanine plus cytosine. A marine isolate, Ma Gal 2, is described as type strain of a new genus and species, Pelobacter acidigallici gen. nov. sp. nov., in the family Bacteroidaceae. In coculture with Acetobacterium woodii, the new isolates converted also syringic acid completely to acetate. Cocultures with Methanosarcina barkeri converted the respective substrates completely to methane and carbon dioxide.  相似文献   

9.
A methanogen, strain AK-1, was isolated from permanently cold marine sediments, 38- to 45-cm below the sediment surface at Skan Bay, Alaska. The cells were highly irregular, nonmotile coccoids (diameter, 1 to 1.2 μm), occurring singly. Cells grew by reducing CO2 with H2 or formate as electron donor. Growth on formate was much slower than that on H2. Acetate, methanol, ethanol, 1- or 2-propanol, 1- or 2-butanol and trimethylamine were not catabolized. The cells required acetate, thiamine, riboflavin, a high concentration of vitamin B12, and peptones for growth; yeast extract stimulated growth but was not required. The cells grew fastest at 25 °C (range 5 °C to 25 °C), at a pH of 6.0 – 6.6 (growth range, pH 5.5 – 7.5), and at a salinity of 0.25 – 1.25 M Na+. Cells of this and other H2-using methanogens from saline environments metabolized H2 to a very low threshold pressure (less than 1 Pa) that was dependent on the methane partial pressure. We propose that the threshold pressure may be limited by the energetics of catabolism. The sequence of the 16S rDNA gene of strain AK-1 was most similar (98%) to the sequences of Methanogenium cariaci JR-1 and Methanogenium frigidum Ace-2. DNA–DNA hybridization between strain AK-1 and these two strains showed only 34.9% similarity to strain JR-1 and 56.5% similarity to strain Ace-2. These analyses indicated strain AK-1 should be classified as a new species within the genus Methanogenium. Phenotypic differences between strain AK-1 and these strains (including growth temperature, salinity range, pH range, and nutrient requirements) support this. Therefore, a new species, Methanogenium marinum, is proposed with strain AK-1 as type strain. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
From an anaerobic enrichment culture with vanillate as substrate, a catechol-degrading lemon-shaped nonsporing sulfate-reducing bacterium, strain NZva20, was isolated in pure culture. Growth occurred in defined, bicarbonate-buffered, sulfide-reduced freshwater medium with catechol as sole electron donor and carbon source. Catechol was completely oxidized to CO2 with an average growth yield of 31 g cell dry mass per mol of catechol, corresponding to 9.5 g cell dry mass per mol of sulfate reduced. Further substrates utilized as electron donors and carbon sources were resorcinol, hydroquinone, benzoate and several other aromatic compounds, hydrogen plus carbon dioxide, formate, lactate, pyruvate, alcohols including methanol, dicarboxylic acids, acetate, propionate and higher fatty acids up to 18 carbon atoms. Instead of sulfate, sulfite, thiosulfate, dithionite or nitrate served as electron acceptors. Nitrate was reduced to ammonium. Strain NZva20 is the first bacterium in which the complete oxidation of organic substrates is linked to the ammonification of nitrate. Elemental sulfur was not utilized as electron acceptor. In the absence of an electron acceptor slow growth occurred on pyruvate or fumarate. The G+C content of the DNA of strain NZva20 was 52.4 mol%. Cytochromes were present. Desulfoviridin could not be detected. Strain NZva20 is described as type strain of a new species, Desulfobacterium catecholicum sp. nov.Affectionately dedicated to Professor Ralph S. Wolfe on the occassion of his 65th birthday  相似文献   

11.
The emission of methane (1.3 mmol of CH4 m−2 day−1), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH4 (0.4 to 1.7 μmol g [dry wt] of soil−1 day−1) under anoxic conditions. At in situ pH, supplemental H2-CO2, ethanol, and 1-propanol all increased CH4 production rates while formate, acetate, propionate, and butyrate inhibited the production of CH4; methanol had no effect. H2-dependent acetogenesis occurred in H2-CO2-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H2 that were subsequently consumed. The accumulation of H2 was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H2; these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H2-utilizing methanogens. A total of 109 anaerobes and 107 hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H2-CO2-supplemented, fatty acid-enriched defined medium. CH4 production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH4-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H2 that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H2 is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   

12.
Anaerobic bacteria degrading 2-methoxyethanol were enriched from freshwater sediments, and three strains were isolated in pure culture. Two of them were Grampositive non-spore-forming rods and grew strictly anaerobically by acetogenic fermentation. Optimal growth occurred at 30°C, initial pH 7.5–8.0. 2-Methoxyethanol and 2-ethoxyethanol were fermented to acetate and corresponding alcohols. Hydrogen plus carbon dioxide, formate, acetoin, l-malate, lactate, pyruvate, fructose, and methoxyl groups of 3,4,5-trimethoxybenzoate and 3,4,5-trimethoxycinnamate were fermented to acetate. 1,2-Propanediol was fermented to acetate, propionate, and propanol. Strain MuME1 was described as a new species, Actetobacterium malicum. It had a DNA base composition of 44.1 mol% guanine plus cytosine. The third strain, which was identified as Pelobacter venetianus, fermented 2-methoxyethanol to methanol, ethanol, and acetate.  相似文献   

13.
Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 μmol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 μmol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40°C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 × g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase.  相似文献   

14.
The anaerobic degradation of 2-propanol in anoxic paddy soil was studied with soil cultures and a 2-propanol-utilizing methanogen. Acetone was the first and the major intermediate involved in the methanogenic degradation of 2-propanol. Analyses with a methanogenesis inhibitor, bacteria antibiotics, and the addition of H2 to the gas phase revealed that 2-propanol oxidation to acetone directly occurred using 2-propanol-utilizing methanogens, but not with H2-producing syntrophic bacteria, for which the removal of acetone is required for complete 2-propanol oxidation. The 2-propanol-utilizing strain IIE1, which is phylogenetically closely related to Methanoculleus palmolei, was isolated from paddy soil, and the potential role of the strain in 2-propanol degradation was investigated. 2-Propanol is one of the representative fermentation intermediates in anaerobic environments. This is the first report on the anaerobic 2-propanol degradation process.  相似文献   

15.
In four species of methanogens able to grow with secondary alcohols as hydrogen donors the expression and properties of secondary alcohol dehydrogenase (sec-ADH) were investigated. Cells grown with 2-propanol and CO2 immediately started to oxidize secondary alcohols to ketones if transferred to new media. In the presence of H2, such cells reduced ketones or aldehydes to alcohols. In the absence of H2, aldehydes were dismutated (without growth) to primary alcohols and fatty acids. None of these reactions was catalyzed by cells grown with only H2 and CO2 at non-limiting concentration. This indicated an induction or derepression of sec-ADH by its substrate. Apparently, sec-ADH in all strains enabled not only the reduction of ketones or aldehydes, but also the dismutation of the latter. Sec-ADH was also expressed if strains were grown on H2 and CO2 in the presence of non-oxidizable, tertiary alcohols. Methanogenium thermophilum expressed sec-ADH even without added alcohol when H2 became limiting. From this species, an F420-specific sec-ADH was purified; the final gel filtration chromatography yielded a single protein peak that coincided with the activity. The enrichment was 12-fold, the activity recovery 26%. SDS polyacrylamide gel electrophoresis indicated that the enzyme was a homodimer with an apparent M r of 79,000. At the pH optimum around 4.2, the specific activity for oxidation of 2-propanol (130 mM) and reduction of acetone (20 mM) was 176 and 110 mol/ min·mg, respectively (40°C). The apparent K m for 2-propanol and acetone (with 15 M F420) was 2.5 and 0.25 mM, respectively. Aldehydes also were reduced.Non-standard abbreviations ADH alcohol dehydrogenase - Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - F420 N-(N-L-lactyl--L-glutamyl)-L-glutamic acid phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mb. Methanobacterium - Mg. Methanogenium - Ms. Methanospirillum - OD578 optical density at 578 nm - SDS sodium dodecyl sulfate  相似文献   

16.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

17.
In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe.  相似文献   

18.
Four strains of new homoacetogenic bacteria were enriched and isolated from freshwater sediments and sludge with ethanol, propanol, 1,2-propanediol, or 1,2-butanediol as substrates. All strains were Gram-positive nonsporeforming rods and grew well in carbonate-buffered defined media under obligately anaerobic conditions. Optimal growth occurred at 27° C around pH 7.0. H2/CO2, primary aliphatic alcohols C3–C5, glucose, fructose, lactate, pyruvate, ethylene glycol, 1,2-propanediol, 2,3-butanediol, acetoin, glycerol, and methyl groups of methoxylated benzoate derivates and betaine were fermented to acetate or, in case of primary alcohols C3–C5 and 1,2-propanediol, to acetate and the respective fatty acid. In coculture with methanogens methane was formed, probably due to interspecies hydrogen transfer. Strain WoProp 1 is described as a new species, Acetobacterium carbinolicum. It had a DNA base composition of 38.5±1.0% guanine plus cytosine, and contained murein of crosslinkage type B similar to A. woodii.  相似文献   

19.
The expression of genes involved in methanogenesis in a thermophilic hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain TM, was investigated both in a pure culture sufficiently supplied with H2 plus CO2 and in a coculture with an acetate-oxidizing hydrogen-producing bacterium, Thermacetogenium phaeum strain PB, in which hydrogen partial pressure was constantly kept very low (20 to 80 Pa). Northern blot analysis indicated that only the mcr gene, which encodes methyl coenzyme M reductase I (MRI), catalyzing the final step of methanogenesis, was expressed in the coculture, whereas mcr and mrt, which encodes methyl coenzyme M reductase II (MRII), the isofunctional enzyme of MRI, were expressed at the early to late stage of growth in the pure culture. In contrast to these two genes, two isofunctional genes (mtd and mth) for N5,N10-methylene-tetrahydromethanopterin dehydrogenase, which catalyzes the fourth step of methanogenesis, and two hydrogenase genes (frh and mvh) were expressed both in a pure culture and in a coculture at the early and late stages of growth. The same expression pattern was observed for Methanothermobacter thermoautotrophicus strain ΔH cocultured with a thermophilic butyrate-oxidizing syntroph, Syntrophothermus lipocalidus strain TGB-C1. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole proteins of M. thermoautotrophicus strain TM obtained from a pure culture and a coculture with the acetate-oxidizing syntroph and subsequent N-terminal amino acid sequence analysis confirmed that MRI and MRII were produced in the pure culture, while only MRI was produced in the coculture. These results indicate that under syntrophic growth conditions, the methanogen preferentially utilizes MRI but not MRII. Considering that hydrogenotrophic methanogens are strictly dependent for growth on hydrogen-producing fermentative microbes in the natural environment and that the hydrogen supply occurs constantly at very low concentrations compared with the supply in pure cultures in the laboratory, the results suggest that MRI is an enzyme primarily functioning in natural methanogenic ecosystems.  相似文献   

20.
In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号