首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aim To test alternative biogeographic hypotheses related to the diversification of a montane mammal (Zapus hudsonius luteus) endemic to the American Southwest. Location South‐western United States. Methods We used statistical phylogeographic analyses of mitochondrial DNA (1512 bp; two genes) from 93 individuals from six geographic regions to test diversification hypotheses. Species distribution models of climate and fossil records were integrated to assess contemporary and historical distributions and barriers to gene flow. We calculated dates of divergence and examined historical demography using coalescent simulations. Results We documented monophyly of Z. h. luteus represented by 19 segregated haplotypes. Predicted current distribution generally coincided with known localities, while predicted paleodistributions suggested that this lineage was widespread throughout lower elevations of the American Southwest and on the Edwards Plateau (as documented by the fossil record). Population size did not change substantially during a westward shift in range that occurred in the last 100 k generations. Results supported fragmentation of a common ancestor during the Holocene as the most plausible explanation for genetic structure. Main conclusions Monophyletic Z. h. luteus reflects fragmentation of a common ancestor with recent (Holocene) upslope colonization of disjunct montane areas. We refute the hypotheses of in situ divergence or origins from a Colorado Piedmont ancestor. Instead, westward colonization from the Edwards Plateau during the Wisconsin followed by Holocene fragmentation, which serves as a generalized biogeographic hypothesis for species associated with mesic graminoid habitats in the American Southwest. Further exploration of these signatures using independent nuclear DNA is warranted. Key conservation implications are (1) Z. h. luteus is a monophyletic lineage on an independent evolutionary trajectory; (2) Z. h. luteus shared a recent common ancestor with Z. h. pallidus (not Z. h. preblei); (3) mtDNA does not reflect recent population declines; and (4) coalescent simulations and species distribution models reflect Holocene fragmentation.  相似文献   

2.
Today, the Seasonally Dry Tropical Forests (SDTF) of eastern South America occur as large, well-defined nuclei (e.g. Caatinga in the northeast) and as smaller enclaves within other vegetations (e.g. Cerrado and Chaco). In order to infer the way the present SDTF distribution was attained, the genetic structure of Astronium urundeuva, a tree confined to SDTF, was assessed using two chloroplast spacers and nine microsatellite loci. Five haplotypes were identified, whose distribution was spatially structured. The distribution of the two most common and divergent haplotypes suggested former vicariance and progressive divergence due to isolation. More recent range expansions of these two lineages subsequently occurred, leading to a secondary contact at the southern limit of the Caatinga SDTF nucleus. The multilocus-Bayesian approach using microsatellites consistently identified three groups of populations (Northeast, Central and Southwest). Isolation by distance was found in Northeast and Southwest groups whereas admixture was detected in the Central group, located at the transition between Caatinga and Cerrado domains. All together, the results support the existence of range expansions and secondary contact in the Central group. This study provides arguments that favour the existence of a previously more continuous formation of SDTF in eastern South America.  相似文献   

3.
Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present‐day tropical biota. Using genome‐wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post‐Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as “isolation by instability,” highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.  相似文献   

4.
The Brazilian Caatinga is part of the seasonally dry tropical forests, a vegetation type disjunctly distributed throughout the Neotropics. It has been suggested that during Pleistocene glacial periods, these dry forests had a continuous distribution, so that these climatic shifts may have acted as important driving forces of the Caatinga biota diversification. To address how these events affected the distribution of a dry forest species, we chose Sicarius cariri, a spider endemic to the Caatinga, as a model. We studied the phylogeography of one mitochondrial and one nuclear gene and reconstructed the paleodistribution of the species using modelling algorithms. We found two allopatric and deeply divergent clades within S. cariri, suggesting that this species as currently recognized might consist of more than one independently evolving lineage. Sicarius cariri populations are highly structured, with low haplotype sharing among localities, high fixation index and isolation by distance. Models of paleodistribution, Bayesian reconstructions and coalescent simulations suggest that this species experienced a reduction in its population size during glacial periods, rather than the expansion expected by previous hypotheses on the paleodistribution of dry forest taxa. In addition to that, major splits of intraspecific lineages of S. cariri took place in the Pliocene. Taken together, these results indicate S. cariri has a complex diversification history dating back to the Tertiary, suggesting the history of dry forest taxa may be significantly older than previously thought.  相似文献   

5.
Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal. We tested these hypotheses using Colobosaura modesta, a small gymnophthalmid lizard from forested habitats in the Cerrado savannas and montane/submontane forests in the Caatinga. We conducted phylogeographic analyses using a multi-locus dataset, tested alternative demographic scenarios with Approximate Bayesian Computation, and also employed species delimitation tests. We recovered a history of recent colonization and expansion along riparian forests, associated with Pleistocene climate shifts, and the existence of a new species of Colobosaura restricted to the Serra do Cachimbo region. We also present evidence that riparian forests have provided an interconnected network for forest organisms within the South American dry diagonal and that Pleistocene events played an important role in their evolutionary history.  相似文献   

6.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

7.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

8.
The relative influence of Neogene geomorphological events and Quaternary climatic changes as causal mechanisms on Neotropical diversification remains largely speculative, as most divergence timing inferences are based on a single locus and have limited taxonomic or geographic sampling. To investigate these influences, we use a multilocus (two mitochondrial and 11 nuclear genes) range‐wide sampling of Phyllopezus pollicaris, a gecko complex widely distributed across the poorly studied South American ‘dry diagonal’ biomes. Our approach couples traditional and model‐based phylogeography with geospatial methods, and demonstrates Miocene diversification and limited influence of Pleistocene climatic fluctuations on P. pollicaris. Phylogeographic structure and distribution models highlight that persistence across multiple isolated regions shaped the diversification of this species complex. Approximate Bayesian computation supports hypotheses of allopatric and ecological/sympatric speciation between lineages that largely coincide with genetic clusters associated with Chaco, Cerrado, and Caatinga, standing for complex diversification between the ‘dry diagonal’ biomes. We recover extremely high genetic diversity and suggest that eight well‐supported clades may be valid species, with direct implications for taxonomy and conservation assessments. These patterns exemplify how low‐vagility species complexes, characterized by strong genetic structure and pre‐Pleistocene divergence histories, represent ideal radiations to investigate broad biogeographic histories of associated biomes.  相似文献   

9.
The processes responsible for cytonuclear discordance frequently remain unclear. Here, we employed an exon capture data set and demographic methods to test hypotheses generated by species distribution models to examine how contrasting histories of range stability vs. fluctuation have caused cytonuclear concordance and discordance in ground squirrel lineages from the Otospermophilus beecheyi species complex. Previous studies in O. beecheyi revealed three morphologically cryptic and highly divergent mitochondrial DNA lineages (named the Northern, Central and Southern lineages based on geography) with only the Northern lineage exhibiting concordant divergence for nuclear genes. Here, we showed that these mtDNA lineages likely formed in allopatry during the Pleistocene, but responded differentially to climatic changes that occurred since the last interglacial (~120,000 years ago). We find that the Northern lineage maintained a stable range throughout this period, correlating with genetic distinctiveness among all genetic markers and low migration rates with the other lineages. In contrast, our results suggested that the Southern lineage expanded from Baja California Sur during the Late Pleistocene to overlap and potentially swamp a contracting Central lineage. High rates of intraspecific gene flow between Southern lineage individuals among expansion origin and expansion edge populations largely eroded Central ancestry from autosomal markers. However, male‐biased dispersal in this system preserved signals of this past hybridization and introgression event in matrilineal‐biased X‐chromosome and mtDNA markers. Our results highlight the importance of range stability in maintaining the persistence of phylogeographic lineages, whereas unstable range dynamics can increase the tendency for lineages to merge upon secondary contact.  相似文献   

10.
The Riverine Barriers Hypothesis (RBH) posits that tropical rivers can be effective barriers to gene flow, based on observations that range boundaries often coincide with river barriers. Over the last 160 years, the RBH has received attention from various perspectives, with a particular focus on vertebrates in the Amazon Basin. To our knowledge, no molecular assessment of the RBH has been conducted on birds in the Afrotropics, despite its rich avifauna and many Afrotropical bird species being widely distributed across numerous watersheds and basins. Here, we provide the first genetic evidence that an Afrotropical river has served as a barrier for birds and for their lice, based on four understory bird species collected from sites north and south of the Congo River. Our results indicate near‐contemporaneous, Pleistocene lineage diversification across the Congo River in these species. Our results further indicate differing levels of genetic variation in bird lice; the extent of this variation appears linked to the life‐history of both the host and the louse. Extensive cryptic diversity likely is being harbored in Afrotropical forests, in both understory birds and their lice. Therefore, these forests may not be “museums” of old lineages. Rather, substantial evolutionary diversification may have occurred in Afrotropical forests throughout the Pleistocene, supporting the Pleistocene Forest Refuge Hypothesis. Strong genetic variation in birds and their lice within a small part of the Congo Basin forest indicates that we may have grossly underestimated diversity in the Afrotropics, making these forests home of substantial biodiversity in need of conservation.  相似文献   

11.
Little is known about species diversification within the deserts of Central Asia. For example, the degree of lineage divergence and timing of population differentiation, as well as potential biogeographic barriers driving diversification, are nearly unknown. Here, we analysed a multi‐locus data set for a widespread sand scorpion (Mesobuthus gorelovi) to evaluate cryptic species diversity and phylogeographic patterns across the Karakum and Kyzylkum deserts. We also combined these data with previously published sequence data to test for a signal of co‐diversification. A consensus species delimitation approach indicated that the widespread M. gorelovi is likely composed of up to five distinct species that began to diversify at the Miocene–Pliocene boundary. We observed shared patterns of lineage divergence across the Amu Darya River region in three scorpion taxa and found support for a shared history of assemblage diversification across this biogeographic barrier. Thus, major river systems appear to facilitate diversification among desert scorpions.  相似文献   

12.
Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold‐adapted montane species, where range shifts have had a pronounced effect on population‐level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane‐restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline.  相似文献   

13.

The riverine barrier hypothesis (RBH) posits that rivers comprise geographical barriers to gene flow for terrestrial organisms, thus promoting genetic differentiation between populations. Here, we explored the RBH on larviparous and pueriparous populations of the live-bearing fire salamander (Salamandra salamandra). While larviparous fire salamanders exhibit a semi-aquatic life cycle (females deposit pre-metamorphic larvae on water), pueriparous salamanders present a fully terrestrial life cycle (females deliver terrestrial juveniles) and, therefore, a greater independence from water for survival and reproduction. We performed a fine-scale sampling of opposite transects in 11 rivers (six and five for larviparous and pueriparous populations, respectively) to test the hypothesis that rivers are more effective barriers for pueriparous salamanders due to their terrestrial life cycle. We carried out individual- and population-based genetic analyses using 14 microsatellites and a mitochondrial marker to examine the extent to which rivers hinder short- and long-term gene flow. We found that rivers are semi-permeable obstacles for both larviparous and pueriparous salamanders, although they appear to be more effective barriers for the latter when rivers with similar attributes are compared. We also found that river width and possibly the presence of crossing structures may influence the genetic barrier effects of rivers in fire salamanders. This is one of the very few studies in amphibians showing how different reproductive strategies influence the barrier effects imposed by rivers.

  相似文献   

14.
Chen G  Hare MP 《Molecular ecology》2011,20(11):2425-2441
Unexpectedly strong geographic structures in many cosmopolitan species of marine holoplankton challenge the traditional view of their unrestrained dispersal and presumably high gene flow. We investigated cryptic lineage diversity and comparative phylogeography of a common estuarine copepod, Acartia tonsa, on the US Atlantic coast, using mitochondrial (mtCOI) and nuclear (nITS) gene markers. Three broadly sympatric lineages (F, S, X) were defined by genealogically concordant clades across both gene trees, strongly supporting recognition as reproductively isolated species. Limited dispersal seems to have had a major role in population differentiation of A. tonsa in general, with gene flow propensities rank ordered X > S > F. Geographic structure was found only at large scales (1000–2000 km) in X and S. Phylogeographic patterns in all three lineages were mostly concordant with previously recognized zoogeographic provinces but a large mid‐Atlantic gap in the occurrence of lineage X, coupled with its presence in Europe, suggests possible nonindigenous origins. For lineage F, physiological adaptation to low‐salinity environments is likely to have accentuated barriers to gene flow and allopatric differentiation at both regional and continental scales. Three allopatric F sublineages inferred a southern centre of origin and a stepwise northward diversification history at the continental scale. The most recently derived F sublineages, in the mid‐Atlantic Bight, showed strong phylogeographic patterns at nITS albeit weaker at mtCOI. Applying a crustacean mtCOI molecular clock suggests that A. tonsa lineages diverged pre‐Pleistocene but mid‐Atlantic F lineage diversification may be post‐Pleistocene.  相似文献   

15.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献   

16.
The epicuticular waxes of leaves of four species (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro) from the Caatinga, (a semi-arid ecosystem of Northeast Brazil) and four species (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa) from the Cerrado, (a savanna ecosystem covering one third of the Brazilian territory), were analyzed. Six species contained a high content (above 60 microg x cm(-2)) of wax, four of them from the Caatinga. Triterpenoids and n-alkanes were the most frequent and abundant constituents found in the species from both habitats. The distribution of n-alkanes predominated by homologues with 27, 29, 31 and 33 carbon atoms, displayed no consistent differences between species from the two habitats. Lupeol, beta-amyrin, epifriedelinol and ursolic acid were the triterpenoids found. Triterpenoids clearly predominate over alkanes in the waxes from the Cerrado species. The waxes of two evergreen species from the Caatinga yielded n-alkanes as predominant constituents. A comparison of foliar epicuticular waxes of native plants from ecosystems with different hydric constraints is discussed.  相似文献   

17.
Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain–island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice‐free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain–island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long‐term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65–1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.  相似文献   

18.
Divergent natural selection driven by competition for limited resources can promote speciation, even in the presence of gene flow. Reproductive isolation is more likely to result from divergent selection when the partitioned resource is closely linked to mating. Obligate symbiosis and host fidelity (mating on or near the host) can provide this link, creating ideal conditions for speciation in the absence of physical barriers to dispersal. Symbiotic organisms often experience competition for hosts, and host fidelity ensures that divergent selection for a specific host or host habitat can lead to speciation and strengthen pre‐existing reproductive barriers. Here, we present evidence that diversification of a sympatric species complex occurred despite the potential for gene flow and that partitioning of host resources (both by species and by host habitat) has contributed to this diversification. Four species of snapping shrimps (Alpheus armatus, A. immaculatus, A. polystictus and A. roquensis) are distributed mainly sympatrically in the Caribbean, while the fifth species (A. rudolphi) is restricted to Brazil. All five species are obligate commensals of sea anemones with a high degree of fidelity and ecological specificity for host species and habitat. We analysed sequence data from 10 nuclear genes and the mitochondrial COI gene in 11–16 individuals from each of the Caribbean taxa and from the only available specimen of the Brazilian taxon. Phylogenetic analyses support morphology‐based species assignments and a well‐supported Caribbean clade. The Brazilian A. rudolphi is recovered as an outgroup to the Caribbean taxa. Isolation–migration coalescent analysis provides evidence for historical gene flow among sympatric sister species. Our data suggest that both selection for a novel host and selection for host microhabitat may have promoted diversification of this complex despite gene flow.  相似文献   

19.
Niche divergence or conservatism and phenotypic adaptation are important in lineage diversification. We used mitochondrial DNA (mtDNA), morphology and ecological niche models to examine these processes in three subspecies of Sage Sparrow (Artemisiospiza belli belli, A. b. canescens and A. b. nevadensis) that breed in bioclimatically diverse ecoregions in western North America. Overall, mtDNA and morphology are congruent with subspecies, ecoregion and bioclimatic niche. Niche divergence, rather than niche conservatism, accompanied by phenotypic adaptation, is associated with lineage diversification between subspecies. This diversification has occurred with and without physical barriers or accompanying genetic divergence. Populations of A. b. canescens are divided by a montane barrier into two bioclimatic regions (San Joaquin Valley, Mojave Desert), where they are indistinguishable phenotypically, but show distinctive genetic patterns. Although there is no physical barrier between A. b. canescens in the San Joaquin Valley and A. b. belli in the Coast Ranges, these populations occupy different bioclimatic niches and are phenotypically, but not genetically, diagnosable. Niche overlap is greatest between A. b. canescens from the Mojave Desert and A. b. nevadensis from the Great Basin, yet these subspecies maintain distinctive phenotypes and mtDNA, even in local secondary contact and sympatry. Palaeoclimatic niche models for the Last Glacial Maximum (c. 21 000 bp ) and the Last Interglacial (c. 120 000 bp ) suggest that ecoregionally distinct populations of Artemisiospiza belli experienced different Pleistocene range fluctuations and glacial refugia, with temporal niche conservatism. Populations probably reached their current distributions as favourable climates and habitats expanded after the last glaciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号