首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c′) and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nm to μm KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.  相似文献   

2.
Han D  Kim K  Oh J  Park J  Kim Y 《Proteins》2008,70(3):900-914
Escherichia coli synthesize C-type cytochromes only during anaerobic growth in media supplemented with nitrate and nitrite. The reduction of nitrate to ammonium in the periplasm of Escherichia coli involves two separate periplasmic enzymes, nitrate reductase and nitrite reductase. The nitrite reductase involved, NrfA, contains cytochrome C and is synthesized coordinately with a membrane-associated cytochrome C, NrfB, during growth in the presence of nitrite or in limiting nitrate concentrations. The genes NrfE, NrfF, and NrfG are required for the formate-dependent nitrite reduction pathway, which involves at least two C-type cytochrome proteins, NrfA and NrfB. The NrfE, NrfF, and NrfG genes (heme lyase complex) are involved in the maturation of a special C-type cytochrome, apocytochrome C (apoNrfA), to cytochrome C (NrfA) by transferring a heme to the unusual heme binding motif of the Cys-Trp-Ser-Cys-Lys sequence in apoNrfA protein. Thus, in order to further investigate the roles of NrfG in the formation of heme lyase complex (NrfEFG) and in the interaction between heme lyase complex and formate-dependent nitrite reductase (NrfA), we determined the crystal structure of NrfG at 2.05 A. The structure of NrfG showed that the contact between heme lyase complex (NrfEFG) and NrfA is accomplished via a TPR domain in NrfG which serves as a binding site for the C-terminal motif of NrfA. The portion of NrfA that binds to TPR domain of NrfG has a unique secondary motif, a helix followed by about a six-residue C-terminal loop (the so called "hook conformation"). This study allows us to better understand the mechanism of special C-type cytochrome assembly during the maturation of formate-dependent nitrite reductase, and also adds a new TPR binding conformation to the list of TPR-mediated protein-protein interactions.  相似文献   

3.
Bacterial c -type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX2CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c -type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX2CK or CX2CH). W. succinogenes CcsA2 was found to attach haem to standard CX2CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX2CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni . Different apo-cytochrome variants carrying the CX15CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli . It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c -type cytochromes.  相似文献   

4.
The CcmH protein of Escherichia coli is encoded by the last gene of the ccm gene cluster required for cytochrome c maturation. A mutant in which the entire ccmH gene was deleted failed to synthesize both indigenous and foreign c-type cytochromes. However, deletion of the C-terminal hydrophilic domain homologous to CycH of other gram-negative bacteria affected neither the biogenesis of indigenous c-type cytochromes nor that of the Bradyrhizobium japonicum cytochrome c 550. This confirmed that only the N-terminal domain containing a conserved CXXC motif is required in E. coli. PhoA fusion analysis showed that this domain is periplasmic. Site-directed mutagenesis of the cysteines of the CXXC motif revealed that both cysteines are required for cytochrome c maturation during aerobic growth, whereas only the second cysteine is required for cytochrome c maturation during anaerobic growth. The deficiency of the point mutants was complemented when 2-mercapto-ethanesulfonic acid was added to growing cells; other thiol compounds did not stimulate cytochrome c formation in these strains. We propose a model for the reaction sequence in which CcmH keeps the heme binding site of apocytochrome c in a reduced form for subsequent heme ligation. Received: 7 September 1998 / Accepted: 15 November 1998  相似文献   

5.
Cytochrome c maturation (Ccm) is a post-translational process that occurs after translocation of apocytochromes c to the positive (p) side of energy-transducing membranes. Ccm is responsible for the formation of covalent bonds between the thiol groups of two cysteines residues at the heme-binding sites of the apocytochromes and the vinyl groups of heme b (protoporphyrin IX-Fe). Among the proteins (CcmABCDEFGHI and CcdA) required for this process, CcmABCD are involved in loading heme b to apoCcmE. The holoCcmE thus formed provides heme b to the apocytochromes. Catalysis of the thioether bonds between the apocytochromes c and heme b is mediated by the heme ligation core complex, which in Rhodobacter capsulatus contains at least the CcmF, CcmH, and CcmI components. In this work we show that the heme chaperone apoCcmE binds to the apocytochrome c and the apocytochrome c chaperone CcmI to yield stable binary and ternary complexes in the absence of heme in vitro. We found that during these protein-protein interactions, apoCcmE favors the presence of a disulfide bond at the apocytochrome c heme-binding site. We also establish using detergent-dispersed membranes that apoCcmE interacts directly with CcmI and CcmH of the heme ligation core complex CcmFHI. Implications of these findings are discussed with respect to heme transfer from CcmE to the apocytochromes c during heme ligation assisted by the core complex CcmFHI.  相似文献   

6.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

7.
The biosynthesis of bacterial and plastidic c-type cytochromes includes several steps that occur post-translationally. In the case of bacterial cytochromes, the cytosolically synthesized pre-proteins are translocated across the cytoplasmic membrane, the pre-proteins are cleaved to their mature forms and heme is ligated to the processed apoprotein. Although heme attachment has not been studied extensively at the biochemical level, molecular genetic approaches suggest that the reaction generally occurs after translocation of the apoprotein to the periplasm. Recent studies with Bradyrhizobium japonicum and Rhodobacter capsulatus indicate that the process of heme attachment requires the function of a large number of genes. Mutation of these genes generates a pleiotropic deficiency in all c-type cytochromes, suggesting that the gene products participate in processes required for the biosynthesis of all c-type cytochromes. In eukaryotic cells, the biosynthesis of photosynthetic c-type cytochromes is somewhat more complex owing to the additional level of compartmentation. Nevertheless, the basic features of the pathway appear to be conserved. For instance, as is the case in bacteria, translocation and processing of the pre-proteins is not dependent on heme attachment. Genetic analysis suggests that the nuclear as well as the plastid genomes encode functions required for heme attachment, and that these genes function in the biosynthesis of the membrane-associated as well as the soluble c-type cytochrome of chloroplasts. A feature of cytochromes c biogenesis that appears to be conserved between chloroplasts and mitochondria is the sub-cellular location of the heme attachment reaction (p-side of the energy transducing membrane). Continued investigation of all three experimental systems (bacteria, chloroplasts, mitochondria) is likely to lead to a greater understanding of the biochemistry of cytochrome maturation as well as the more general problem of cofactor-protein association during the assembly of an energy transducing membrane.Abbreviations CCHL cytochrome c/heme lyase - CC1HL cytochrome cl/heme lyase - cyt cytochrome - EMS ethyl methane sulphonate - n-side electrochemically negative side of an energy transducing membrane - p-side electrochemically positive side of an energy transducing membrane - PhoA alkaline phosphatase (encoded by the phoA locus)  相似文献   

8.
Cytochrome c552 is the terminal component of the formate-dependent nitrite reduction pathway of Escherichia coli. In addition to four ‘typical’ haem-binding motifs, CXXCH-, characteristic of c-type cytochromes, the N-terminal region of NrfA includes a motif, CWSCK. Peptides generated by digesting the cytochrome from wild-type bacteria with cyanogen bromide followed by trypsin were analysed by on-line HPLC MS/MS in parent scanning mode. A strong signal at mass 619, corresponding to haem, was generated by fragmentation of a peptide of mass 1312 that included the sequence CWSCK. Neither this signal nor the haem-containing peptide of mass 1312 was detected in parallel experiments with cytochrome that had been purified from a transformant unable to synthesize NrfE, NrfF and NrfG: this is consistent with our previous report that NrfE and NrfG (but not NrfF) are essential for formate-dependent nitrite reduction. Redox titrations clearly revealed the presence of high and low mid-point potential redox centres. The best fit to the experimental data is for three n = 1 components with mid-point redox potentials (pH 7.0) of +45 mV (21% of the total absorbance change), ?90 mV (36% of the total) and ?210 mV (43% of the total). Plasmids in which the lysine codon of the cysteine–lysine motif, AAA, was changed to the histidine codon CAT (to create a fifth ‘typical’ haem c-binding motif), or to the isoleucine and leucine codons, ATT and CTT, were unable to transform a Nrf? deletion mutant to Nrf+ or to restore formate-dependent nitrite reduction to the transformants. The presence of a 50 kDa periplasmic c-type cytochrome was confirmed by staining proteins separated by SDS–PAGE for covalently bound haem, but the methyl-viologen-dependent nitrite reductase activities associated with the mutated proteins, although still detectable, were far lower than that of the native protein. The combined data establish not only that there is a haem group bound covalently to the cysteine–lysine motif of cytochrome c552 but also that one or more products of the last three genes of the nrf operon are essential for the haem ligation to this motif.  相似文献   

9.
Maturation of c-type cytochromes involves the covalent and stereospecific enzymatic attachment of a heme b via thioether linkages to two conserved cysteines within apocytochromes. Horse cytochrome c is readily matured into its native holoform in the cytoplasm of E. coli when co-expressed with yeast cytochrome c heme lyase. Here we report the low yield formation of holocytochrome with covalently attached heme also in the absence of heme lyase. This is the first demonstration of in vivo maturation of a eukaryotic cytochrome c in a prokaryotic cytoplasm without the assistance by a dedicated enzymatic maturation system. The assembled cytochrome c can be oxidized by cytochrome c oxidase, indicating the formation of a functional protein. The absorption spectrum is typical of a low spin, six coordinated c-type heme. Nevertheless, minor spectral differences relative to the native cytochrome c, deviation of the midpoint reduction potential and slightly altered kinetic parameters of the interaction with cytochrome c oxidase emphasize the importance of cytochrome c heme lyase in folding cytochrome c into its native conformation.  相似文献   

10.
Strain HUUG25 ofParacoccus denitrificans has been frequently thought to be devoid of allc-type cytochromes. We show here by means of enzymological and immunological techniques that the mutant synthesizes active nitrite reductase (cytochromecd 1) upon prolonged exposure to microoxic conditions. The synthesis occurred faster in the presence of exogenous hemin. The time pattern of 5-aminolevulinate synthase activity was also altered by the mutation. These findings suggest a defective regulation of heme supply to the site of nitrite reductase assembly in the periplasm.  相似文献   

11.
The metal‐reducing bacterium Shewanella oneidensis is capable of reducing various metal(loid)s and produces nanoparticles (NPs) extracellularly, in which outer membrane c‐type cytochromes (OMCs) have been suggested to play important roles. The objective of this study was to investigate the influence of the OMCs, that is, MtrC and OmcA, on the size and activity of the extracellular silver NPs (AgNPs) and silver sulfide NPs (Ag2S NPs) produced by S. oneidensis MR‐1. We found that (i) the lack of OMCs on S. oneidensis cell surface decreased the particle size of the extracellular biogenic AgNPs and Ag2S NPs; (ii) the biogenic AgNPs from the mutant lacking OMCs showed higher antibacterial activity; and (iii) the biogenic Ag2S NPs from the mutant lacking OMCs exhibited higher catalytic activity in methylviologen reduction. The results suggest that it may be possible to control particle size and activity of the extracellular biogenic NPs via controlled expression of the genes encoding surface proteins. In addition, we also reveal that in extracellular biosynthesis of NPs the usually neglected non‐cell‐associated NPs could have high catalytic activity, highlighting the need of novel methods that can efficiently retain extracellular NPs in the biosynthesis processes. Biotechnol. Bioeng. 2013; 110: 1831–1837. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate–ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol–cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.  相似文献   

13.
Heme containing proteins are involved in a broad range of cellular functions, from oxygen sensing and transport to catalyzing oxidoreductive reactions. The two major types of cytochrome (b‐type and c‐type) only differ in their mechanism of heme attachment, but this has major implications for their cellular roles in both localization and mechanism. The b‐type cytochromes are commonly cytoplasmic, or are within the cytoplasmic membrane, while c‐type cytochromes are always found outside of the cytoplasm. The mechanism of heme attachment allows for complex c‐type multiheme complexes, having the capacity to hold multiple electrons, to be assembled. These are increasingly being identified as secreted into the extracellular environment. For organisms that respire using extracellular substrates, these large multiheme cytochromes allow for electron transfer networks from the cytoplasmic membrane to the cell exterior for the reduction of extracellular electron acceptors. In this review the structures and functions of these networks and the mechanisms by which electrons are transferred to extracellular substrates is described.  相似文献   

14.
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe1Mn0.3Zn0.26Cu0.03Co0.03Mo0.03. Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c 3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.  相似文献   

15.
Nitric oxide reductase (NOR) catalyzes the generation of nitrous oxide (N2O) via the reductive coupling of two nitric oxide (NO) molecules at a heme/non‐heme Fe center. We report herein on the structures of the reduced and ligand‐bound forms of cytochrome c‐dependent NOR (cNOR) from Pseudomonas aeruginosa at a resolution of 2.3–2.7 Å, to elucidate structure‐function relationships in NOR, and compare them to those of cytochrome c oxidase (CCO) that is evolutionarily related to NOR. Comprehensive crystallographic refinement of the CO‐bound form of cNOR suggested that a total of four atoms can be accommodated at the binuclear center. Consistent with this, binding of bulky acetaldoxime (CH3‐CH=N‐OH) to the binuclear center of cNOR was confirmed by the structural analysis. Active site reduction and ligand binding in cNOR induced only ~0.5 Å increase in the heme/non‐heme Fe distance, but no significant structural change in the protein. The highly localized structural change is consistent with the lack of proton‐pumping activity in cNOR, because redox‐coupled conformational changes are thought to be crucial for proton pumping in CCO. It also permits the rapid decomposition of cytotoxic NO in denitrification. In addition, the shorter heme/non‐heme Fe distance even in the bulky ligand‐bound form of cNOR (~4.5 Å) than the heme/Cu distance in CCO (~5 Å) suggests the ability of NOR to maintain two NO molecules within a short distance in the confined space of the active site, thereby facilitating N‐N coupling to produce a hyponitrite intermediate for the generation of N2O. Proteins 2014; 82:1258–1271. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmH(Rc) (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmH(Rc) is needed to completely overcome the role of CcmI during the biogenesis of c-type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis.  相似文献   

17.
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c‐type cytochrome (cN) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c‐type cytochrome domain of cN shares high sequence identity with those localized c‐terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C‐terminal c‐type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host‐restricted bacterial genus.  相似文献   

18.
In gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R. capsulatus does not have the ability to produce holocytochromes c or consequently to exhibit photosynthetic growth and cytochrome cbb3 oxidase activity. Previously, we have demonstrated that null mutants of CcmI partially overcome cytochrome c deficiency phenotypes upon overproduction of the CcmF-R. capsulatus CcmH (CcmF-CcmH(Rc)) couple in a growth medium-dependent manner and fully bypass these defects by additional overproduction of CcmG. Here, we show that overproduction of the CcmF-CcmH(Rc) couple and overproduction of the N-terminal membrane-spanning segment of CcmI (CcmI-1) have similar suppression effects of cytochrome c maturation defects in CcmI-null mutants. Likewise, additional overproduction of CcmG, the C-terminal periplasmic segment of CcmI (CcmI-2), or even of apocytochrome c2 also provides complementation abilities similar to those of these mutants. These results indicate that the two segments of CcmI have different functions and support our earlier findings that two independent steps are required for full recovery of the loss of CcmI function. We therefore propose that CcmI-1 is part of the CcmF-CcmH(Rc)-dependent heme ligation, while CcmI-2 is involved in the CcdA- and CcmG-dependent apoprotein thioreduction steps, which intersect at the level of CcmI during cytochrome c biogenesis.  相似文献   

19.
A genetic approach is described here that enables the specific covalent attachment of heme via a short C-terminal peptide tag to an otherwise non-heme-binding protein. Covalent attachment of heme to the apo-protein is catalysed by the cytochrome c maturation system of Escherichia coli. While its original enzymatic activity is retained, the resulting heme-tagged protein is red, has peroxidase activity and is redox active. The presence or absence of a C-terminal histidine tag results in low-spin heme iron with six- or high-spin heme iron with five coordinate ligands, respectively. The heme tag can be used as a tool for the rational design of artificial c-type cytochromes and metalloenzymes, thereby overcoming previous limitations set by chemical approaches. Moreover, the tag allows direct visualisation of the red fusion protein during purification.  相似文献   

20.
Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite‐ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host‐associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep‐sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao‐maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao‐typical absorbance maximum at 460 nm. In most cases, the εHao‐encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane‐bound HaoCA assembly reminiscent of the menaquinol‐oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a ‘missing link’ in the evolution of NrfA and Hao enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号