首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L H Bradley  R P Swenson 《Biochemistry》1999,38(38):12377-12386
The midpoint potentials for both redox couples of the noncovalently bound flavin mononucleotide (FMN) cofactor in the flavodoxin are known to be pH dependent. While the pH dependency for the oxidized-semiquinone (ox/sq) couple is consistent with the formation of the blue neutral form of the flavin semiquinone, that of the semiquinone-hydroquinone (sq/hq) couple is more enigmatic. The apparent pK(a) of 6.7 for this couple in the flavodoxin from Clostridium beijerinckii has been attributed to the ionization of the FMN(HQ); however, nuclear magnetic resonance data strongly suggest the FMN(HQ) remains anionic over the entire pH range testable. As an alternative explanation, a specific glutamate residue (Glu59 in this flavodoxin), which is hydrogen-bonded to N(3)H of the FMN, has been postulated to be the primary redox-linked proton acceptor responsible for the pH effect in some flavodoxins. This model was directly tested in this study by permanently neutralizing Glu59 by its replacement with glutamine. This conservative substitution resulted in an increase of 86 mV (at pH 7) in midpoint potential of the sq/hq couple; however, the pH dependency of this couple was not altered. Thus, the redox-linked protonation of Glu59 clearly cannot be responsible for this effect as proposed. The pH dependency of the ox/sq couple was also similar to wild type, but the midpoint potential has decreased by 65 mV (pH 7). The K(d) values for the oxidized, semiquinone, and hydroquinone complexes increased by 43-, 590-, and 20-fold, respectively, relative to the wild type. Thus, the Glu59 to glutamine substitution substantially effects the stability of the semiquinone but, on a relative basis, slightly favors the formation of the hydroquinone. On the basis of (1)H-(15)N HSQC nuclear magnetic resonance spectroscopic studies, the increased temperature coefficients for the protons on N(3) and N(5) of the reduced FMN in E59Q suggest that the hydrogen-bonding interactions at these positions are significantly weakened in this mutant. The increase for N(5)H correlates with the reduced stability of the FMN(SQ) and the more negative midpoint potential for the ox/sq couple. On the basis of the X-ray structure, an "anchoring" role is proposed for the side chain carboxylate of Glu59 that stabilizes the structure of the 50's loop in such a way so as to promote the crucial hydrogen-bonding interaction that stabilizes the flavin semiquinone, contributing to the low potential of this flavodoxin.  相似文献   

2.
F C Chang  R P Swenson 《Biochemistry》1999,38(22):7168-7176
In the Clostridium beijerinckii flavodoxin, the reduction of the flavin mononucleotide (FMN) cofactor is accompanied by a local conformation change in which the Gly57-Asp58 peptide bond "flips" from primarily the unusual cis O-down conformation in the oxidized state to the trans O-up conformation such that a new hydrogen bond can be formed between the carbonyl group of Gly57 and the proton on N(5) of the neutral FMN semiquinone radical [Ludwig, M. L., Pattridge, K. A., Metzger, A. L., Dixon, M. M., Eren, M., Feng, Y., and Swenson, R. P. (1997) Biochemistry 36, 1259-1280]. This interaction is thought to contribute to the relative stabilization of the flavin semiquinone and may be at least partially responsible for the substantial separation of the midpoint potentials of the two one-electron reduction steps. Through a series of amino acid substitutions, the above cited study demonstrated the critical role of the often conserved glycine residue in this process. However, it has not been directly established experimentally as to whether these substitutions brought about the changes in the midpoint potentials by altering the strength of this hydrogen-bonding interaction as proposed. In this study, the relative strengths of the FMN N(5)H.O57 hydrogen bond in wild type and the G57A, G57N, and G57T mutants were evaluated by measuring the temperature dependency of the chemical shift for the proton on N(5) of the fully reduced cofactor by 1H-15N HSQC nuclear magnetic resonance spectroscopy. Based on the established correlation between the temperature coefficient of amide protons and the strength of hydrogen bonding in small peptides, the apparent strength of the N(5)H.O57 interaction was found to depend on the properties of the side chain at position 57. The glycine residue found in the wild-type flavodoxin appears to provide the strongest interaction while the beta-branched side chain in the G57T mutant provides the weakest. A good correlation was noted between the temperature coefficients of N(5)H and the one-electron reduction potential for the ox/sq couple as well as the binding free energy of the FMN semiquinone in this group of mutants. These results provide more direct quantitative evidence that support the previous hypothesis that this conformation change and the associated formation of the hydrogen bonding interaction with N(5)H of the reduced FMN represent an important means of stabilizing the neutral semiquinone and in modulating the oxidation-reduction potentials of the flavin cofactor in this and perhaps other flavodoxins.  相似文献   

3.
The long-chain flavodoxins, with 169-176 residues, display oxidation-reduction potentials at pH 7 that vary from -50 to -260 mV for the oxidized/semiquinone (ox/sq) equilibrium and are -400 mV or lower for the semiquinone/hydroquinone (sq/hq) equilibrium. To examine the effects of protein interactions and conformation changes on FMN potentials in the long-chain flavodoxin from Anacystis nidulans (Synechococcus PCC 7942), we have determined crystal structures for the semiquinone and hydroquinone forms of the wild-type protein and for the mutant Asn58Gly, and have measured redox potentials and FMN association constants. A peptide near the flavin ring, Asn58-Val59, reorients when the FMN is reduced to the semiquinone form and adopts a conformation ("O-up") in which O 58 hydrogen bonds to the flavin N(5)H; this rearrangement is analogous to changes observed in the flavodoxins from Clostridium beijerinckii and Desulfovibrio vulgaris. On further reduction to the hydroquinone state, the Asn58-Val59 peptide in crystalline wild-type A. nidulans flavodoxin rotates away from the flavin to the "O-down" position characteristic of the oxidized structure. This reversion to the conformation found in the oxidized state is unusual and has not been observed in other flavodoxins. The Asn58Gly mutation, at the site which undergoes conformation changes when FMN is reduced, was expected to stabilize the O-up conformation found in the semiquinone oxidation state. This mutation raises the ox/sq potential by 46 mV to -175 mV and lowers the sq/hq potential by 26 mV to -468 mV. In the hydroquinone form of the Asn58Gly mutant the C-O 58 remains up and hydrogen bonded to N(5)H, as in the fully reduced flavodoxins from C. beijerinckii and D. vulgaris. The redox and structural properties of A. nidulans flavodoxin and the Asn58Gly mutant confirm the importance of interactions made by N(5) or N(5)H in determining potentials, and are consistent with earlier conclusions that conformational energies contribute to the observed potentials.The mutations Asp90Asn and Asp100Asn were designed to probe the effects of electrostatic interactions on the potentials of protein-bound flavin. Replacement of acidic by neutral residues at positions 90 and 100 does not perturb the structure, but has a substantial effect on the sq/hq equilibrium. This potential is increased by 25-41 mV, showing that electrostatic interaction between acidic residues and the flavin decreases the potential for conversion of the neutral semiquinone to the anionic hydroquinone. The potentials and the effects of mutations in A. nidulans flavodoxin are rationalized using a thermodynamic scheme developed for C. beijerinckii flavodoxin.  相似文献   

4.
Flavodoxin II from Azotobacter vinelandii is a "long-chain" flavodoxin and has one of the lowest E1 midpoint potentials found within the flavodoxin family. To better understand the relationship between structural features and redox potentials, the oxidized form of the C69A mutant of this flavodoxin was crystallized and its three-dimensional structure determined to a resolution of 2.25 A by molecular replacement. Its overall fold is similar to that of other flavodoxins, with a central five-stranded parallel beta-sheet flanked on either side by alpha-helices. An eight-residue insertion, compared with other long-chain flavodoxins, forms a short 3(10) helix preceding the start of the alpha3 helix. The flavin mononucleotide (FMN) cofactor is flanked by a leucine on its re face instead of the more conserved tryptophan, resulting in a more solvent-accessible FMN binding site and stabilization of the hydroquinone (hq) state. In particular the absence of a hydrogen bond to the N5 atom of the oxidized FMN was identified, which destabilizes the ox form, as well as an exceptionally large patch of acidic residues in the vicinity of the FMN N1 atom, which destabilizes the hq form. It is also argued that the presence of a Gly at position 58 in the sequence stabilizes the semiquinone (sq) form, as a result, raising the E2 value in particular.  相似文献   

5.
Flavodoxins (Flds) are small proteins that shuttle electrons in a range of reactions in microorganisms. Flds contain a redox‐active cofactor, a flavin mononucleotide (FMN), and it is well established that when Flds are reduced by one electron, a peptide bond close to the FMN isoalloxazine ring flips to form a new hydrogen bond with the FMN N5H, stabilizing the one‐electron reduced state. Here, we present high‐resolution crystal structures of Flavodoxin 1 from Bacillus cereus in both the oxidized (ox) and one‐electron reduced (semiquinone, sq) state. We observe a mixture of conformers in the oxidized state; a 50:50 distribution between the established oxidized conformation where the peptide bond is pointing away from the flavin, and a conformation where the peptide bond is pointing toward the flavin, approximating the conformation in the semiquinone state. We use single‐crystal spectroscopy to demonstrate that the mixture of conformers is not caused by radiation damage to the crystal. This is the first time that such a mixture of conformers is reported in a wild‐type Fld. We therefore carried out a survey of published Fld structures, which show that several proteins have a pronounced conformational flexibility of this peptide bond. The degree of flexibility seems to be modulated by the presence, or absence, of stabilizing interactions between the peptide bond carbonyl and its surrounding amino acids. We hypothesize that the degree of conformational flexibility will affect the Fld ox/sq redox potential.  相似文献   

6.
Flavodoxins are small flavin mononucleotide (FMN)‐containing proteins that mediate a variety of electron transfer processes. The primary sequence of flavodoxin from Fusobacterium nucleatum, a pathogenic oral bacterium, is marked with a number of distinct features including a glycine to lysine (K13) substitution in the highly conserved phosphate‐binding loop (T/S‐X‐T‐G‐X‐T), variation in the aromatic residues that sandwich the FMN cofactor, and a more even distribution of acidic and basic residues. The Eox/sq (oxidized/semiquinone; ?43 mV) and Esq/hq (semiquinone/hydroquinone; ?256 mV) are the highest recorded reduction potentials of known long‐chain flavodoxins. These more electropositive values are a consequence of the apoprotein binding to the FMN hydroquinone anion with ~70‐fold greater affinity compared to the oxidized form of the cofactor. Inspection of the FnFld crystal structure revealed the absence of a hydrogen bond between the protein and the oxidized FMN N5 atom, which likely accounts for the more electropositive Eox/sq. The more electropositive Esq/hq is likely attributed to only one negatively charged group positioned within 12 Å of the FMN N1. We show that natural substitutions of highly conserved residues partially account for these more electropositive reduction potentials.  相似文献   

7.
Human methionine synthase reductase (MSR) catalyzes the NADPH-dependent reductive methylation of methionine synthase. MSR is 78 kDa flavoprotein belonging to a family of diflavin reductases, with cytochrome P450 reductase (CPR) as the prototype. MSR and its individual flavin-binding domains were cloned as GST-tagged fusion proteins for expression and purification from Escherichia coli. The isolated flavin domains of MSR retain UV-visible and secondary structural properties indicative of correctly folded flavoproteins. Anaerobic redox titrations on the individual domains assisted in assignment of the midpoint potentials for the high- and low-potential flavin. For the isolated FMN domain, the midpoint potentials for the oxidized/semiquinone (ox/sq) couple and semiquinone/hydroquinone (sq/hq) couple are -112 and -221 mV, respectively, at pH 7.0 and 25 degrees C. The corresponding couples in the isolated FAD domain are -222 mV (ox/sq) and -288 mV (sq/hq). Both flavins form blue neutral semiquinone species characterized by broad absorption peaks in the long-wavelength region during anaerobic titration with sodium dithionite. In full-length MSR, the values of the FMN couples are -109 mV (ox/sq) and -227 mV (sq/hq), and the corresponding couple values for FAD are -254 mV (ox/sq) and -291 mV (sq/hq). Separation of the MSR flavins does not perturb their thermodynamic properties, as midpoint potentials for all four couples are similar in isolated domains and in full-length MSR. The redox properties of MSR are discussed in relation to other members of the diflavin oxidoreductase family and the mechanism of electron transfer.  相似文献   

8.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

9.
M Kasim  R P Swenson 《Biochemistry》2001,40(45):13548-13555
The four-residue reverse turn -Met56-Gly-Asp-Glu59- in the Clostridium beijerinckii flavodoxin provides the majority of the critical interactions with the isoalloxazine ring of the flavin mononucleotide (FMN) cofactor that contribute to the binding and the differential stabilization of its three redox states. Direct side chain contacts include the sulfur-ring interaction of Met56, which primarily influences the oxidized and hydroquinone states, and the hydrogen bond by Glu59 with the N3H, which directly (and indirectly through its "anchoring" function) influences all three states to various extents. Involving a novel redox-dependent conformational change, the hydrogen bond formed between the carbonyl group of Gly57 and the N5H of the reduced cofactor strongly influences the stability of the semiquinone state. In this study, the sequential elimination of all side chain interactions in various combinations through a systematic alanine-scanning mutagenesis approach was conducted to more completely understand the functional inter-relationships as well as any synergistic interactions that might occur within the loop. In general, additive effects for each side chain on the midpoint potentials for both couples were observed except for the hydroquinone state where some degree of nonadditivity was noted in multiple mutants involving Glu59. The study concluded with the generation of the triple mutant -Ala56-Gly-Ala-Ala59- in which all side chain interactions are removed. Gly57 was left unchanged because of its critical conformational contribution. Remarkably, this mutant retained the ability to bind the FMN and to thermodynamically stabilize the semiquinone state despite the absence of all side chain interactions. Collectively, these observations emphasize the overriding importance of the main chain interactions with the N5H of the FMN and the associated redox-dependent conformational change in this loop and leaves little doubt as to its role in the thermodynamic stabilization of the neutral semiquinone state of the FMN cofactor.  相似文献   

10.
Bradley LH  Swenson RP 《Biochemistry》2001,40(30):8686-8695
The role of the hydrogen bonding interaction with the N(3)H of the flavin cofactor in the modulation of the redox properties of flavoproteins has not been extensively investigated. In the flavodoxin from Clostridium beijerinckii, the gamma-carboxylate group of glutamate-59 serves as a dual hydrogen bond acceptor with the N(3)H of flavin mononucleotide (FMN) cofactor and the amide hydrogen of the adjacent polypeptide backbone in all three oxidation states. This "bridging" interaction serves to anchor the FMN in the binding site, which, based on the E59Q mutant, indirectly affects the stability of the neutral flavin semiquinone by facilitating a strong and critical interaction at the FMN N(5)H [Bradley, L. H., and Swenson, R. P. (1999) Biochemistry 38, 12377-12386]. In this study, the specific role of the N(3)H interaction itself was investigated through the systematic replacement of Glu59 by aspartate, asparagine, and alanine in an effort to weaken, disrupt, and/or eliminate this interaction, respectively. Just as for the E59Q mutant, each replacement significantly weakened the binding of the cofactor, particularly for the semiquinone state, affecting the midpoint potentials of each one-electron couple in opposite directions. (1)H-(15)N HSQC nuclear magnetic resonance (NMR) spectroscopic studies revealed that not only was the N(3)H interaction weakened as anticipated, but so also was the hydrogen bonding interaction with the N(5)H. Using the temperature coefficients of the N(5)H to quantify and correct for changes in this interaction, the contribution of the N(3)H hydrogen bond to the binding of each redox state of the FMN was isolated and estimated. Based on this analysis, the N(3)H hydrogen bonding interaction appears to contribute primarily to the stability of the oxidized state (by as much as 2 kcal/mol) and to a lesser extent the reduced states. It is concluded that this interaction contributes only modestly (<45 mV) to the modulation of the midpoint potential for each redox couple in the flavodoxin. These conclusions are generally consistent with ab initio calculations and model studies on the non-protein-bound cofactor.  相似文献   

11.
The side chain of aspartate 95 in flavodoxin from Desulfovibrio vulgaris provides the closest negative charge to N(1) of the bound FMN in the protein. Site-directed mutagenesis was used to substitute alanine, asparagine, or glutamate for this amino acid to assess the effect of this charge on the semiquinone/hydroquinone redox potential (E(1)) of the FMN cofactor. The D95A mutation shifts the E(1) redox potential positively by 16 mV, while a negative shift of 23 mV occurs in the oxidized/semiquinone midpoint redox potential (E(2)). The crystal structures of the oxidized and semiquinone forms of this mutant are similar to the corresponding states of the wild-type protein. In contrast to the wild-type protein, a further change in structure occurs in the D95A mutant in the hydroquinone form. The side chain of Y98 flips into an energetically more favorable edge-to-face interaction with the bound FMN. Analysis of the structural changes in the D95A mutant, taking into account electrostatic interactions at the FMN binding site, suggests that the pi-pi electrostatic repulsions have only a minor contribution to the very low E(1) redox potential of the FMN cofactor when bound to apoflavodoxin. Substitution of D95 with glutamate causes only a slight perturbation of the two one-electron redox potentials of the FMN cofactor. The structure of the D95E mutant reveals a large movement of the 60-loop (residues 60-64) away from the flavin in the oxidized structure. Reduction of this mutant to the hydroquinone causes the conformation of the 60-loop to revert back to that occurring in the structures of the wild-type protein. The crystal structures of the D95E mutant imply that electrostatic repulsion between a carboxylate on the side chain at position 95 and the phenol ring of Y98 prevents rotation of the Y98 side chain to a more energetically favorable conformation as occurs in the D95A mutant. Replacement of D95 with asparagine has no effect on E(2) but causes E(1) to change by 45 mV. The D95N mutant failed to crystallize. The K(d) values of the protein FMN complex in all three oxidation-reduction states differ from those of the wild-type complexes. Molecular modeling showed that the conformational energy of the protein changes with the redox state, in qualitative agreement with the observed changes in K(d), and allowed the electrostatic interactions between the FMN and the surrounding groups on the protein to be quantified.  相似文献   

12.
The free energy landscapes of peptide conformations in water have been observed by the enhanced conformational sampling method, applying the selectively enhanced multicanonical molecular dynamics simulations. The conformations of the peptide dimers, -Gly-Gly-, -Gly-Ala-, -Gly-Ser-, -Ala-Gly-, -Asn-Gly-, -Pro-Gly-, -Pro-Ala-, and -Ala-Ala-, which were all blocked with N-terminal acetyl and C-terminal N-methyl groups, were individually sampled with the explicit TIP3P water molecules. From each simulation trajectory, we obtained the canonical ensemble at 300 K, from which the individual three-dimensional landscape was drawn by the potential of mean force using the three reaction coordinates: the backbone dihedral angle, psi, of the first amino acid, the backbone dihedral angle, phi, of the second amino acid, and the distance between the carbonyl oxygen of the N-terminal acetyl group and the C-terminal amide proton. The most stable state and several meta-stable states correspond to extended conformations and typical beta-turn conformations, and their free energy values were accounted for from the potentials of mean force at the states. In addition, the contributions from the intra-molecular energies of peptides and those from the hydration effects were analyzed. Consequently, the stable beta-turn conformations in the free energy landscape were consistent with the empirically preferred beta-turn types for each amino acid sequence. The thermodynamic values for the hydration effect were decomposed and they correlated well with the empirical values estimated from the solvent accessible surface area of each molecular conformation during the trajectories. The origin of the architecture of protein local fragments was analyzed from the viewpoint of the free energy and its decomposed factors.  相似文献   

13.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

14.
Flavodoxin from Desulfovibrio vulgaris (Hildenborough) has been expressed at a high level (3-4% soluble protein) in Escherichia coli by subcloning a minimal insert carrying the gene behind the tac promoter of plasmid pDK6. The recombinant protein was readily isolated and its properties were shown to be identical to those of the wild-type protein obtained directly from D. vulgaris, with the exception that the recombinant protein lacks the N-terminal methionine residue. Detailed measurements of the redox potentials of this flavodoxin are reported for the first time. The redox potential, E2, for the couple oxidized flavodoxin/flavodoxin semiquinone at pH 7.0 is -143 mV (25 degrees C), while the value for the flavodoxin semiquinone/flavodoxin hydroquinone couple (E1) at the same pH is -440 mV. The effects of pH on the observed potentials were examined; E2 varies linearly with pH (slope = -59 mV), while E1 is independent of pH at high pH values, but below pH 7.5 the potential becomes less negative with decreasing pH, indicating a redox-linked protonation of the flavodoxin hydroquinone. D. vulgaris apoflavodoxin binds FMN very tightly, with a value of 0.24 nM for the dissociation constant (Kd) at pH 7.0 and 25 degrees C, similar to that observed with other flavodoxins. In addition, the apoflavodoxin readily binds riboflavin (Kd = 0.72 microM; 50 mM sodium phosphate, pH 7.0, 5 mM EDTA at 25 degrees C) and the complex is spectroscopically very similar to that formed with FMN. The redox potentials for the riboflavin complex were determined at pH 6.5 (E1 = -262 mV, E2 = -193 mV; 25 degrees C) and are discussed in the light of earlier proposals that charge/charge interactions between different parts of the flavin hydroquinone play a crucial role in determining E1 in flavodoxin.  相似文献   

15.
The nifF gene coding for the flavodoxin from the nitrogen-fixing bacterium Azotobacter vinelandii (strain OP) was cloned into the plasmid vector pUC7 [Bennett, L. T., Jacobsen, M. R., & Dean, D. R. (1988) J. Biol. Chem. 263 1364-1369] and the resulting plasmid transformed and expressed in Escherichia coli strain DH5. Recombinant Azotobacter flavodoxin is expressed at levels 5-6-fold higher in E. coli than in comparable yields of Azotobacter cultures grown under nitrogen-fixing conditions. Even higher levels were observed with flavodoxin expressed in E. coli under control of a tac promoter. Electron spin resonance spectroscopy on whole cells and in cell-free extracts showed the flavodoxin to be largely in the semiquinone form. The flavodoxin purified from E. coli exhibited the same molecular weight, isoelectric point, flavin mononucleotide (FMN) content, N-terminal sequence, and carboxyl-terminal amino acids as for the wild-type Azotobacter protein. The recombinant flavodoxin differed from native flavodoxin in that it exhibited an increased antigenicity to flavodoxin antibody and did not contain a covalently bound phosphate. Small differences are also observed in circular dichroism spectral properties in the visible and ultraviolet spectral regions. The recombinant, dephospho flavodoxin exhibits an oxidized/semiquinone potential (pH 8.0) of -224 mV and a semiquinone/hydroquinone couple (pH 8.0) of -458 mV. This latter couple is 50-60 mV higher than that exhibited by the native flavodoxin. Resolution of recombinant dephospho flavodoxin resulted in an apoflavodoxin that was much less stable than that prepared from the native protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ishikita H 《Biochemistry》2008,47(15):4394-4402
The redox potential of the flavin mononucleotide (FMN) hydroquinones for one-electron reduction in the Desulfovibrio vulgaris ( D. vulgaris) flavodoxin ( E sq/hq for FMNH (*)/FMNH (-)) was calculated using the crystal structure of the relevant hydroquinone form and compared to the results of the Clostridium beijerinckii ( C. beijerinckii) flavodoxin. In D. vulgaris and C. beijerinckii flavodoxins, the protein side chain causes significant downshifts of 170 and 240 mV in E sq/hq, respectively. In the C. beijerinckii flavodoxin, the E sq/hq downshift because of the protein side chain is essentially compensated by the counter influence of the protein backbone ( E sq/hq upshift of 260 mV). However, in the D. vulgaris flavodoxin, the corresponding protein backbone influence on E sq/hq is significantly small, i.e., less than half of that in the C. beijerinckii flavodoxin. In particular, there is a significant difference in the influence of the protein backbone of the so-called 60s loop region between the two flavodoxins. The E sq/hq difference can be best explained by the lower compensation of the side chain influence by the backbone influence in the D. vulgaris flavodoxin than in the C. beijerinckii flavodoxin.  相似文献   

17.
Blazyk JL  Lippard SJ 《Biochemistry》2002,41(52):15780-15794
Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) catalyzes the selective oxidation of methane to methanol, the first step in the primary catabolic pathway of methanotrophic bacteria. A reductase (MMOR) mediates electron transfer from NADH through its FAD and [2Fe-2S] cofactors to the dinuclear non-heme iron sites housed in a hydroxylase (MMOH). The structurally distinct [2Fe-2S], FAD, and NADH binding domains of MMOR facilitated division of the protein into its functional ferredoxin (MMOR-Fd) and FAD/NADH (MMOR-FAD) component domains. The 10.9 kDa MMOR-Fd (MMOR residues 1-98) and 27.6 kDa MMOR-FAD (MMOR residues 99-348) were expressed and purified from recombinant Escherichia coli systems. The Fd and FAD domains have absorbance spectral features identical to those of the [2Fe-2S] and flavin components, respectively, of MMOR. Redox potentials, determined by reductive titrations that included indicator dyes, for the [2Fe-2S] and FAD cofactors in the domains are as follows: -205.2 +/- 1.3 mV for [2Fe-2S](ox/red), -172.4 +/- 2.0 mV for FAD(ox/sq), and -266.4 +/- 3.5 mV for FAD(sq/hq). Kinetic and spectral properties of intermediates observed in the reaction of oxidized MMOR-FAD (FAD(ox)) with NADH at 4 degrees C were established with stopped-flow UV-visible spectroscopy. Analysis of the influence of pH on MMOR-FAD optical spectra, redox potentials, and NADH reaction kinetics afforded pK(a) values for the semiquinone (FAD(sq)) and hydroquinone (FAD(hq)) MMOR-FAD species and two protonatable groups near the flavin cofactor. Electron transfer from MMOR-FAD(hq) to oxidized MMOR-Fd is extremely slow (k = 1500 M(-1) s(-1) at 25 degrees C, compared to 90 s(-1) at 4 degrees C for internal electron transfer between cofactors in MMOR), indicating that cofactor proximity is essential for efficient interdomain electron transfer.  相似文献   

18.
Flavoproteins can dramatically adjust the thermodynamics and kinetics of electron transfer at their flavin cofactor. A versatile regulatory tool is proton transfer. Here, we demonstrate the significance of proton-coupled electron transfer to redox tuning and semiquinone (sq) stability in photolyases (PLs) and cryptochromes (CRYs). These light-responsive proteins share homologous overall architectures and FAD-binding pockets, yet they have evolved divergent functions that include DNA repair, photomorphogenesis, regulation of circadian rhythm, and magnetoreception. We report the first measurement of both FAD redox potentials for cyclobutane pyrimidine dimer PL (CPD-PL, Anacystis nidulans). These values, E(1)(hq/sq) = -140 mV and E(2)(sq/ox) = -219 mV, where hq is FAD hydroquinone and ox is oxidized FAD, establish that the sq is not thermodynamically stabilized (ΔE = E(2) - E(1) = -79 mV). Results with N386D CPD-PL support our earlier hypothesis of a kinetic barrier to sq oxidation associated with proton transfer. Both E(1) and E(2) are upshifted by ~ 100 mV in this mutant; replacing the N5-proximal Asn with Asp decreases the driving force for sq oxidation. However, this Asp alleviates the kinetic barrier, presumably by acting as a proton shuttle, because the sq in N386D CPD-PL oxidizes orders of magnitude more rapidly than wild type. These data clearly reveal, as suggested for plant CRYs, that an N5-proximal Asp can switch on proton transfer and modulate sq reactivity. However, the effect is context-dependent. More generally, we propose that PLs and CRYs tune the properties of their N5-proximal residue to adjust the extent of proton transfer, H-bonding patterns, and changes in protein conformation associated with electron transfer at the flavin.  相似文献   

19.
The gene for the electron-transfer protein flavodoxin has been cloned from Megasphaera elsdenii using the polymerase chain reaction. The recombinant gene was sequenced, expressed in an Escherichia coli expression system, and the recombinant protein purified and characterized. With the exception of an additional methionine residue at the N-terminus, the physico-chemical properties of the protein, including its optical spectrum and oxidation-reduction properties, are very similar to those of native flavodoxin. A site-directed mutant, E60Q, was made to investigate the effects of removing the negatively charged group that is nearest to N(1) of the bound FMN. The absorbance maximum in the visible region of the bound flavin moves from 446 to 453 nm. The midpoint oxidation-reduction potential at pH 7 for reduction of oxidized flavodoxin to the semiquinone E2 becomes more negative, decreasing from -114 to -242 mV; E1, the potential for reduction of semiquinone to the hydroquinone, becomes less negative, increasing from -373 mV to -271 mV. A redox-linked pKa associated with the hydroquinone is decreased from 5.8 to < or = 4.3. The spectra of the hydroquinones of wild-type and mutant proteins depend on pH (apparent pKa values of 5.8 and < or = 5.2, respectively). The complexes of apoprotein and all three redox forms of FMN are much weaker for the mutant, with the greatest effect occurring when the flavin is in the semiquinone form. These results suggest that glutamate 60 plays a major role in control of the redox properties of M. elsdenii flavodoxin, and they provide experimental support to an earlier proposal that the carboxylate on its side-chain is associated with the redox-linked pKa of 5.8 in the hydroquinone.  相似文献   

20.
Flavodoxins are proteins with an alpha/beta doubly wound topology that mediate electron transfer through a non-covalently bound flavin mononucleotide (FMN). The FMN moiety binds strongly to folded flavodoxin (K(D)=0.1 nM, oxidized FMN). To study the effect of this organic cofactor on the conformational stability, we have characterized apo and holo forms of Desulfovibrio desulfuricans flavodoxin by GuHCl-induced denaturation. The unfolding reactions for both holo- and apo-flavodoxin are reversible. However, the unfolding curves monitored by far-UV circular dichroism and fluorescence spectroscopy do not coincide. For both apo- and holo-flavodoxin, a native-like intermediate (with altered tryptophan fluorescence but secondary structure as the folded form) is present at low GuHCl concentrations. There is no effect on the flavodoxin stability imposed by the presence of the FMN cofactor (DeltaG=20(+/-2) and 19(+/-1) kJ/mol for holo- and apo-flavodoxin, respectively). A thermodynamic cycle, connecting FMN binding to folded and unfolded flavodoxin with the unfolding free energies for apo- and holo-flavodoxin, suggests that the binding strength of FMN to unfolded flavodoxin must be very high (K(D)=0.2 nM). In agreement, we discovered that the FMN remains coordinated to the polypeptide upon unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号