首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The long-chain flavodoxins, with 169-176 residues, display oxidation-reduction potentials at pH 7 that vary from -50 to -260 mV for the oxidized/semiquinone (ox/sq) equilibrium and are -400 mV or lower for the semiquinone/hydroquinone (sq/hq) equilibrium. To examine the effects of protein interactions and conformation changes on FMN potentials in the long-chain flavodoxin from Anacystis nidulans (Synechococcus PCC 7942), we have determined crystal structures for the semiquinone and hydroquinone forms of the wild-type protein and for the mutant Asn58Gly, and have measured redox potentials and FMN association constants. A peptide near the flavin ring, Asn58-Val59, reorients when the FMN is reduced to the semiquinone form and adopts a conformation ("O-up") in which O 58 hydrogen bonds to the flavin N(5)H; this rearrangement is analogous to changes observed in the flavodoxins from Clostridium beijerinckii and Desulfovibrio vulgaris. On further reduction to the hydroquinone state, the Asn58-Val59 peptide in crystalline wild-type A. nidulans flavodoxin rotates away from the flavin to the "O-down" position characteristic of the oxidized structure. This reversion to the conformation found in the oxidized state is unusual and has not been observed in other flavodoxins. The Asn58Gly mutation, at the site which undergoes conformation changes when FMN is reduced, was expected to stabilize the O-up conformation found in the semiquinone oxidation state. This mutation raises the ox/sq potential by 46 mV to -175 mV and lowers the sq/hq potential by 26 mV to -468 mV. In the hydroquinone form of the Asn58Gly mutant the C-O 58 remains up and hydrogen bonded to N(5)H, as in the fully reduced flavodoxins from C. beijerinckii and D. vulgaris. The redox and structural properties of A. nidulans flavodoxin and the Asn58Gly mutant confirm the importance of interactions made by N(5) or N(5)H in determining potentials, and are consistent with earlier conclusions that conformational energies contribute to the observed potentials.The mutations Asp90Asn and Asp100Asn were designed to probe the effects of electrostatic interactions on the potentials of protein-bound flavin. Replacement of acidic by neutral residues at positions 90 and 100 does not perturb the structure, but has a substantial effect on the sq/hq equilibrium. This potential is increased by 25-41 mV, showing that electrostatic interaction between acidic residues and the flavin decreases the potential for conversion of the neutral semiquinone to the anionic hydroquinone. The potentials and the effects of mutations in A. nidulans flavodoxin are rationalized using a thermodynamic scheme developed for C. beijerinckii flavodoxin.  相似文献   

2.
The gene for the electron-transfer protein flavodoxin has been cloned from Megasphaera elsdenii using the polymerase chain reaction. The recombinant gene was sequenced, expressed in an Escherichia coli expression system, and the recombinant protein purified and characterized. With the exception of an additional methionine residue at the N-terminus, the physico-chemical properties of the protein, including its optical spectrum and oxidation-reduction properties, are very similar to those of native flavodoxin. A site-directed mutant, E60Q, was made to investigate the effects of removing the negatively charged group that is nearest to N(1) of the bound FMN. The absorbance maximum in the visible region of the bound flavin moves from 446 to 453 nm. The midpoint oxidation-reduction potential at pH 7 for reduction of oxidized flavodoxin to the semiquinone E2 becomes more negative, decreasing from -114 to -242 mV; E1, the potential for reduction of semiquinone to the hydroquinone, becomes less negative, increasing from -373 mV to -271 mV. A redox-linked pKa associated with the hydroquinone is decreased from 5.8 to < or = 4.3. The spectra of the hydroquinones of wild-type and mutant proteins depend on pH (apparent pKa values of 5.8 and < or = 5.2, respectively). The complexes of apoprotein and all three redox forms of FMN are much weaker for the mutant, with the greatest effect occurring when the flavin is in the semiquinone form. These results suggest that glutamate 60 plays a major role in control of the redox properties of M. elsdenii flavodoxin, and they provide experimental support to an earlier proposal that the carboxylate on its side-chain is associated with the redox-linked pKa of 5.8 in the hydroquinone.  相似文献   

3.
M Kasim  R P Swenson 《Biochemistry》2001,40(45):13548-13555
The four-residue reverse turn -Met56-Gly-Asp-Glu59- in the Clostridium beijerinckii flavodoxin provides the majority of the critical interactions with the isoalloxazine ring of the flavin mononucleotide (FMN) cofactor that contribute to the binding and the differential stabilization of its three redox states. Direct side chain contacts include the sulfur-ring interaction of Met56, which primarily influences the oxidized and hydroquinone states, and the hydrogen bond by Glu59 with the N3H, which directly (and indirectly through its "anchoring" function) influences all three states to various extents. Involving a novel redox-dependent conformational change, the hydrogen bond formed between the carbonyl group of Gly57 and the N5H of the reduced cofactor strongly influences the stability of the semiquinone state. In this study, the sequential elimination of all side chain interactions in various combinations through a systematic alanine-scanning mutagenesis approach was conducted to more completely understand the functional inter-relationships as well as any synergistic interactions that might occur within the loop. In general, additive effects for each side chain on the midpoint potentials for both couples were observed except for the hydroquinone state where some degree of nonadditivity was noted in multiple mutants involving Glu59. The study concluded with the generation of the triple mutant -Ala56-Gly-Ala-Ala59- in which all side chain interactions are removed. Gly57 was left unchanged because of its critical conformational contribution. Remarkably, this mutant retained the ability to bind the FMN and to thermodynamically stabilize the semiquinone state despite the absence of all side chain interactions. Collectively, these observations emphasize the overriding importance of the main chain interactions with the N5H of the FMN and the associated redox-dependent conformational change in this loop and leaves little doubt as to its role in the thermodynamic stabilization of the neutral semiquinone state of the FMN cofactor.  相似文献   

4.
Flavodoxin from Desulfovibrio vulgaris (Hildenborough) has been expressed at a high level (3-4% soluble protein) in Escherichia coli by subcloning a minimal insert carrying the gene behind the tac promoter of plasmid pDK6. The recombinant protein was readily isolated and its properties were shown to be identical to those of the wild-type protein obtained directly from D. vulgaris, with the exception that the recombinant protein lacks the N-terminal methionine residue. Detailed measurements of the redox potentials of this flavodoxin are reported for the first time. The redox potential, E2, for the couple oxidized flavodoxin/flavodoxin semiquinone at pH 7.0 is -143 mV (25 degrees C), while the value for the flavodoxin semiquinone/flavodoxin hydroquinone couple (E1) at the same pH is -440 mV. The effects of pH on the observed potentials were examined; E2 varies linearly with pH (slope = -59 mV), while E1 is independent of pH at high pH values, but below pH 7.5 the potential becomes less negative with decreasing pH, indicating a redox-linked protonation of the flavodoxin hydroquinone. D. vulgaris apoflavodoxin binds FMN very tightly, with a value of 0.24 nM for the dissociation constant (Kd) at pH 7.0 and 25 degrees C, similar to that observed with other flavodoxins. In addition, the apoflavodoxin readily binds riboflavin (Kd = 0.72 microM; 50 mM sodium phosphate, pH 7.0, 5 mM EDTA at 25 degrees C) and the complex is spectroscopically very similar to that formed with FMN. The redox potentials for the riboflavin complex were determined at pH 6.5 (E1 = -262 mV, E2 = -193 mV; 25 degrees C) and are discussed in the light of earlier proposals that charge/charge interactions between different parts of the flavin hydroquinone play a crucial role in determining E1 in flavodoxin.  相似文献   

5.
Human methionine synthase reductase (MSR) is a protein containing both FAD and FMN, and it reactivates methionine synthase that has lost activity due to oxidation of cob(I)alamin to cob(II)alamin. In this study, anaerobic redox titrations were employed to determine the midpoint reduction potentials for the flavin cofactors in two highly prevalent polymorphic variants of MSR, I22/L175 and M22/S175. The latter is a genetic determinant of plasma homocysteine levels and has been linked to premature coronary artery disease, Down's syndrome, and neural tube defects. The I22/L175 polymorphism has been described in a homocystinuric patient. Interestingly, this polymorphism is in the extended linker region between the two flavin domains, which may mediate or facilitate interaction with methionine synthase. In MSR I22/L175, the FMN potentials are -103 mV (oxidized/semiquinone) and -175 mV (semiquinone/hydroquinone) at pH 7.0 and 25 degrees C, and the corresponding FAD potentials are -252 and -285 mV, respectively. For the M22/S175 variants, the values of the four midpoint potentials are -114 mV (FMN oxidized/semiquinone), -212 mV (FMN semiquinone/hydroquinone), -236 mV (FAD oxidized/semiquinone), and -264 mV (FAD semiquinone/hydroquinone). The midpoint potential values in the two variants are generally comparable to those originally determined for the MSR I22/S175 variant [Wolthers, K. R. (2003) Biochemistry 42, 3911-3920], with relatively minor variations in the different redox couples. In each case, blue neutral flavin semiquinone species are stabilized on both flavins, and are characterized by a broad absorption band in the long wavelength region. In addition, stopped-flow absorption and fluorescence spectroscopy were used to study the pre-steady state reduction kinetics by NADPH of the two polymorphic variants. The reversible kinetic model proposed for wild-type MSR was validated for the I22/L175 and M22/S175 variants. Thus, the biochemical penalties associated with these polymorphisms, which result in less effective methionine synthase activation, do not appear to result from differences in their reduction kinetics. It is likely that differences in their relative affinities for the redox partner, methionine synthase, underlie the differences in the relative efficiencies of reductive activation exhibited by the variants.  相似文献   

6.
L H Bradley  R P Swenson 《Biochemistry》1999,38(38):12377-12386
The midpoint potentials for both redox couples of the noncovalently bound flavin mononucleotide (FMN) cofactor in the flavodoxin are known to be pH dependent. While the pH dependency for the oxidized-semiquinone (ox/sq) couple is consistent with the formation of the blue neutral form of the flavin semiquinone, that of the semiquinone-hydroquinone (sq/hq) couple is more enigmatic. The apparent pK(a) of 6.7 for this couple in the flavodoxin from Clostridium beijerinckii has been attributed to the ionization of the FMN(HQ); however, nuclear magnetic resonance data strongly suggest the FMN(HQ) remains anionic over the entire pH range testable. As an alternative explanation, a specific glutamate residue (Glu59 in this flavodoxin), which is hydrogen-bonded to N(3)H of the FMN, has been postulated to be the primary redox-linked proton acceptor responsible for the pH effect in some flavodoxins. This model was directly tested in this study by permanently neutralizing Glu59 by its replacement with glutamine. This conservative substitution resulted in an increase of 86 mV (at pH 7) in midpoint potential of the sq/hq couple; however, the pH dependency of this couple was not altered. Thus, the redox-linked protonation of Glu59 clearly cannot be responsible for this effect as proposed. The pH dependency of the ox/sq couple was also similar to wild type, but the midpoint potential has decreased by 65 mV (pH 7). The K(d) values for the oxidized, semiquinone, and hydroquinone complexes increased by 43-, 590-, and 20-fold, respectively, relative to the wild type. Thus, the Glu59 to glutamine substitution substantially effects the stability of the semiquinone but, on a relative basis, slightly favors the formation of the hydroquinone. On the basis of (1)H-(15)N HSQC nuclear magnetic resonance spectroscopic studies, the increased temperature coefficients for the protons on N(3) and N(5) of the reduced FMN in E59Q suggest that the hydrogen-bonding interactions at these positions are significantly weakened in this mutant. The increase for N(5)H correlates with the reduced stability of the FMN(SQ) and the more negative midpoint potential for the ox/sq couple. On the basis of the X-ray structure, an "anchoring" role is proposed for the side chain carboxylate of Glu59 that stabilizes the structure of the 50's loop in such a way so as to promote the crucial hydrogen-bonding interaction that stabilizes the flavin semiquinone, contributing to the low potential of this flavodoxin.  相似文献   

7.
Flavodoxins are small flavin mononucleotide (FMN)‐containing proteins that mediate a variety of electron transfer processes. The primary sequence of flavodoxin from Fusobacterium nucleatum, a pathogenic oral bacterium, is marked with a number of distinct features including a glycine to lysine (K13) substitution in the highly conserved phosphate‐binding loop (T/S‐X‐T‐G‐X‐T), variation in the aromatic residues that sandwich the FMN cofactor, and a more even distribution of acidic and basic residues. The Eox/sq (oxidized/semiquinone; ?43 mV) and Esq/hq (semiquinone/hydroquinone; ?256 mV) are the highest recorded reduction potentials of known long‐chain flavodoxins. These more electropositive values are a consequence of the apoprotein binding to the FMN hydroquinone anion with ~70‐fold greater affinity compared to the oxidized form of the cofactor. Inspection of the FnFld crystal structure revealed the absence of a hydrogen bond between the protein and the oxidized FMN N5 atom, which likely accounts for the more electropositive Eox/sq. The more electropositive Esq/hq is likely attributed to only one negatively charged group positioned within 12 Å of the FMN N1. We show that natural substitutions of highly conserved residues partially account for these more electropositive reduction potentials.  相似文献   

8.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

9.
The flavodoxins of the Azotobacter vinelandii wild-type and a mutant strain TZN 200 have been studied. Although the primary structure of the two proteins is the same, the ability of the mutant flavodoxin to donate electrons to nitrogenase is reduced by 75%. One reason may be the raised mid-point potential of -435 mV for the semiquinone/hydroquinone couple in the mutant flavodoxin. The respective redox potential for the wild-type flavodoxin was found to be -480 mV. As shown by paper chromatography and light absorption spectroscopy, the structure of FMN is modified in the TZN 200 flavodoxin.  相似文献   

10.
Midpoint reduction potentials for the flavin cofactors in human NADPH-cytochrome P450 oxidoreductase were determined by anaerobic redox titration of the diflavin (FAD and FMN) enzyme and by separate titrations of its isolated FAD/NADPH and FMN domains. Flavin reduction potentials are similar in the isolated domains (FAD domain E(1) [oxidized/semiquinone] = -286 +/- 6 mV, E(2) [semiquinone/reduced] = -371 +/- 7 mV; FMN domain E(1) = -43 +/- 7 mV, E(2) = -280 +/- 8 mV) and the soluble diflavin reductase (E(1) [FMN] = -66 +/- 8 mV, E(2) [FMN] = -269 +/- 10 mV; E(1) [FAD] = -283 +/- 5 mV, E(2) [FAD] = -382 +/- 8 mV). The lack of perturbation of the individual flavin potentials in the FAD and FMN domains indicates that the flavins are located in discrete environments and that these environments are not significantly disrupted by genetic dissection of the domains. Each flavin titrates through a blue semiquinone state, with the FMN semiquinone being most intense due to larger separation (approximately 200 mV) of its two couples. Both the FMN domain and the soluble reductase are purified in partially reduced, colored form from the Escherichia coli expression system, either as a green reductase or a gray-blue FMN domain. In both cases, large amounts of the higher potential FMN are in the semiquinone form. The redox properties of human cytochrome P450 reductase (CPR) are similar to those reported for rabbit CPR and the reductase domain of neuronal nitric oxide synthase. However, they differ markedly from those of yeast and bacterial CPRs, pointing to an important evolutionary difference in electronic regulation of these enzymes.  相似文献   

11.
Flavodoxin II from Azotobacter vinelandii is a "long-chain" flavodoxin and has one of the lowest E1 midpoint potentials found within the flavodoxin family. To better understand the relationship between structural features and redox potentials, the oxidized form of the C69A mutant of this flavodoxin was crystallized and its three-dimensional structure determined to a resolution of 2.25 A by molecular replacement. Its overall fold is similar to that of other flavodoxins, with a central five-stranded parallel beta-sheet flanked on either side by alpha-helices. An eight-residue insertion, compared with other long-chain flavodoxins, forms a short 3(10) helix preceding the start of the alpha3 helix. The flavin mononucleotide (FMN) cofactor is flanked by a leucine on its re face instead of the more conserved tryptophan, resulting in a more solvent-accessible FMN binding site and stabilization of the hydroquinone (hq) state. In particular the absence of a hydrogen bond to the N5 atom of the oxidized FMN was identified, which destabilizes the ox form, as well as an exceptionally large patch of acidic residues in the vicinity of the FMN N1 atom, which destabilizes the hq form. It is also argued that the presence of a Gly at position 58 in the sequence stabilizes the semiquinone (sq) form, as a result, raising the E2 value in particular.  相似文献   

12.
Kasim M  Swenson RP 《Biochemistry》2000,39(50):15322-15332
A surface loop in the flavodoxin from Clostridium beijerinckii comprised of residues -Met(56)-Gly-Asp-Glu(59)- forms a four-residue reverse turn which undergoes a conversion from a mix of cis/trans peptide configurations that approximate a type II configuration in the oxidized state to a type II' turn upon reduction of the bound flavin mononucleotide (FMN) cofactor. This change results in the formation of a new hydrogen bond between the N(5)H of the reduced cofactor and the carbonyl group of Gly57 of the central peptide bond of the turn, an interaction that is thought to contribute to the modulation of the oxidation-reduction potentials of the cofactor [Ludwig, M. L., Pattridge, K. A., Metzger, A. L., Dixon, M. M., Eren, M., Feng, Y., and Swenson, R. P. (1997) Biochemistry 36, 1259-1280]. In this study, the direct linkage of the conformational energetics of this turn to the stabilization of the FMN semiquinone was established by systematically replacing the second and third residues of the turn (Gly57 and Asp58) with the -Gly-Gly-, -Gly-Ala-, -Ala-Gly-, and -Ala-Ala- dipeptidyl sequences. On the basis of published position specific preferences for residues with side chains (mimicked by Ala) and glycine, a strong correlation was observed between E(ox/sq) and the calculated free-energy differences between the type II and type II' conformations of each of these sequence combinations. The -Ala-Gly- sequence, which favors the type II turn configuration primarily adopted in the oxidized state, displays a E(ox/sq) value that is about 150 mV more negative than that for the wild-type-like -Gly-Ala- sequence, which prefers the type II' conformation observed in the reduced states. The -Gly-Gly- and -Ala-Ala- mutants exhibit intermediate E(ox/sq) values consistent with their ambivalent turn preferences. The potential changes are primarily the result of alterations in the stability of the semiquinone state. These results provide more conclusive evidence for the crucial role of this conformational change in the modulation of the redox potentials of this flavodoxin. Furthermore, this study establishes a direct association between the conformational energetics of the protein, induced in this case by the sequence specificity of a beta-turn, and the differential thermodynamic stabilization of specific redox states of the cofactor, demonstrating another means by which flavoproteins can modulate the redox potentials of the bound cofactor.  相似文献   

13.
The oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119 were determined by potentiometry. The potentials at pH 7 for the oxidized flavodoxin/flavodoxin semiquinone couple (E2) and the flavodoxin semiquinone/hydroquinone couple (E1) were -212 mV and -436 mV, respectively. E1 was independent of pH above about pH 7, but changed by approximately -60 mV/pH below about pH 6, suggesting that the fully reduced protein has a redox-linked pKa at about 6.1, similar to those of certain other flavodoxins. E2 varied by -50 mV/pH in the range pH 5-8. The redox potential for the two-electron reduction of ferredoxin-NADP+ reductase was -344 mV at pH 7 (delta Em = -30 mV/pH). In the 1:1 electrostatic complex of the two proteins titrated at pH 7, E2 was shifted by +8 mV and E1 was shifted by -25 mV; the shift in potential for the reductase was +4 mV. The potentials again shifted following treatment of the electrostatic complex with a carbodiimide, to covalently link the two proteins. By comparison with the separate proteins at pH 7, E2 for flavodoxin shifted by -21 mV and E1 shifted by +20 mV; the reductase potential shifted by +2 mV. The potentials of the proteins in the electrostatic and covalent complexes showed similar pH dependencies to those of the individual proteins. Qualitatively similar changes occurred when ferredoxin-NADP+ reductase from Anabaena variabilis was complexed with flavodoxin from Azotobacter vinelandii. The shifts in redox potential for the complexes were used with previously determined values for the dissociation constant (Kd) of the electrostatic complex of the two oxidised proteins, in order to estimate Kd values for the interaction of the different redox forms of the proteins. The calculations showed that the electrostatic complexes, formed when the proteins differ in their redox states, are stronger than those formed when both proteins are fully oxidized or fully reduced.  相似文献   

14.
Flavoproteins can dramatically adjust the thermodynamics and kinetics of electron transfer at their flavin cofactor. A versatile regulatory tool is proton transfer. Here, we demonstrate the significance of proton-coupled electron transfer to redox tuning and semiquinone (sq) stability in photolyases (PLs) and cryptochromes (CRYs). These light-responsive proteins share homologous overall architectures and FAD-binding pockets, yet they have evolved divergent functions that include DNA repair, photomorphogenesis, regulation of circadian rhythm, and magnetoreception. We report the first measurement of both FAD redox potentials for cyclobutane pyrimidine dimer PL (CPD-PL, Anacystis nidulans). These values, E(1)(hq/sq) = -140 mV and E(2)(sq/ox) = -219 mV, where hq is FAD hydroquinone and ox is oxidized FAD, establish that the sq is not thermodynamically stabilized (ΔE = E(2) - E(1) = -79 mV). Results with N386D CPD-PL support our earlier hypothesis of a kinetic barrier to sq oxidation associated with proton transfer. Both E(1) and E(2) are upshifted by ~ 100 mV in this mutant; replacing the N5-proximal Asn with Asp decreases the driving force for sq oxidation. However, this Asp alleviates the kinetic barrier, presumably by acting as a proton shuttle, because the sq in N386D CPD-PL oxidizes orders of magnitude more rapidly than wild type. These data clearly reveal, as suggested for plant CRYs, that an N5-proximal Asp can switch on proton transfer and modulate sq reactivity. However, the effect is context-dependent. More generally, we propose that PLs and CRYs tune the properties of their N5-proximal residue to adjust the extent of proton transfer, H-bonding patterns, and changes in protein conformation associated with electron transfer at the flavin.  相似文献   

15.
Hellwig P  Yano T  Ohnishi T  Gennis RB 《Biochemistry》2002,41(34):10675-10679
During turnover of cytochrome bo(3) from Escherichia coli, a semiquinone radical is stabilized in a high-affinity binding site. To identify binding partners of this radical, site-directed mutants have been designed on the basis of a recently modeled quinone binding site (Abramson et al., 2000). The R71H, H98F, D75H, and I102W mutant enzymes were found to show very little or no quinol oxidase activity. The thermodynamic and EPR spectroscopic properties of semiquinone radicals in these mutants were characterized. For the H98F and the R71H mutants, no EPR signal of the semiquinone radical was observed in the redox potential range from -100 to 250 mV. During potentiometric titration of the D75H mutant enzyme, a semiquinone signal was detected in the same potential range as that of the wild-type enzyme. However, the EPR spectrum of the D75H mutant lacks the characteristic hyperfine structure of the semiquinone radical signal observed in the wild-type oxidase, indicating that D75 or the introduced His, interacts with the semiquinone radical. For the I102W mutant, a free radical signal was observed with a redox midpoint potential downshifted by about 200 mV. On the basis of these observations, it is suggested that R71, D75, and H98 residues are involved in the stabilization of the semiquinone state in the high-affinity binding site. Details of the possible binding motif and mechanistic implications are discussed.  相似文献   

16.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

17.
Bradley LH  Swenson RP 《Biochemistry》2001,40(30):8686-8695
The role of the hydrogen bonding interaction with the N(3)H of the flavin cofactor in the modulation of the redox properties of flavoproteins has not been extensively investigated. In the flavodoxin from Clostridium beijerinckii, the gamma-carboxylate group of glutamate-59 serves as a dual hydrogen bond acceptor with the N(3)H of flavin mononucleotide (FMN) cofactor and the amide hydrogen of the adjacent polypeptide backbone in all three oxidation states. This "bridging" interaction serves to anchor the FMN in the binding site, which, based on the E59Q mutant, indirectly affects the stability of the neutral flavin semiquinone by facilitating a strong and critical interaction at the FMN N(5)H [Bradley, L. H., and Swenson, R. P. (1999) Biochemistry 38, 12377-12386]. In this study, the specific role of the N(3)H interaction itself was investigated through the systematic replacement of Glu59 by aspartate, asparagine, and alanine in an effort to weaken, disrupt, and/or eliminate this interaction, respectively. Just as for the E59Q mutant, each replacement significantly weakened the binding of the cofactor, particularly for the semiquinone state, affecting the midpoint potentials of each one-electron couple in opposite directions. (1)H-(15)N HSQC nuclear magnetic resonance (NMR) spectroscopic studies revealed that not only was the N(3)H interaction weakened as anticipated, but so also was the hydrogen bonding interaction with the N(5)H. Using the temperature coefficients of the N(5)H to quantify and correct for changes in this interaction, the contribution of the N(3)H hydrogen bond to the binding of each redox state of the FMN was isolated and estimated. Based on this analysis, the N(3)H hydrogen bonding interaction appears to contribute primarily to the stability of the oxidized state (by as much as 2 kcal/mol) and to a lesser extent the reduced states. It is concluded that this interaction contributes only modestly (<45 mV) to the modulation of the midpoint potential for each redox couple in the flavodoxin. These conclusions are generally consistent with ab initio calculations and model studies on the non-protein-bound cofactor.  相似文献   

18.
The nifF gene coding for the flavodoxin from the nitrogen-fixing bacterium Azotobacter vinelandii (strain OP) was cloned into the plasmid vector pUC7 [Bennett, L. T., Jacobsen, M. R., & Dean, D. R. (1988) J. Biol. Chem. 263 1364-1369] and the resulting plasmid transformed and expressed in Escherichia coli strain DH5. Recombinant Azotobacter flavodoxin is expressed at levels 5-6-fold higher in E. coli than in comparable yields of Azotobacter cultures grown under nitrogen-fixing conditions. Even higher levels were observed with flavodoxin expressed in E. coli under control of a tac promoter. Electron spin resonance spectroscopy on whole cells and in cell-free extracts showed the flavodoxin to be largely in the semiquinone form. The flavodoxin purified from E. coli exhibited the same molecular weight, isoelectric point, flavin mononucleotide (FMN) content, N-terminal sequence, and carboxyl-terminal amino acids as for the wild-type Azotobacter protein. The recombinant flavodoxin differed from native flavodoxin in that it exhibited an increased antigenicity to flavodoxin antibody and did not contain a covalently bound phosphate. Small differences are also observed in circular dichroism spectral properties in the visible and ultraviolet spectral regions. The recombinant, dephospho flavodoxin exhibits an oxidized/semiquinone potential (pH 8.0) of -224 mV and a semiquinone/hydroquinone couple (pH 8.0) of -458 mV. This latter couple is 50-60 mV higher than that exhibited by the native flavodoxin. Resolution of recombinant dephospho flavodoxin resulted in an apoflavodoxin that was much less stable than that prepared from the native protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.  相似文献   

20.
Ishikita H 《Biochemistry》2008,47(15):4394-4402
The redox potential of the flavin mononucleotide (FMN) hydroquinones for one-electron reduction in the Desulfovibrio vulgaris ( D. vulgaris) flavodoxin ( E sq/hq for FMNH (*)/FMNH (-)) was calculated using the crystal structure of the relevant hydroquinone form and compared to the results of the Clostridium beijerinckii ( C. beijerinckii) flavodoxin. In D. vulgaris and C. beijerinckii flavodoxins, the protein side chain causes significant downshifts of 170 and 240 mV in E sq/hq, respectively. In the C. beijerinckii flavodoxin, the E sq/hq downshift because of the protein side chain is essentially compensated by the counter influence of the protein backbone ( E sq/hq upshift of 260 mV). However, in the D. vulgaris flavodoxin, the corresponding protein backbone influence on E sq/hq is significantly small, i.e., less than half of that in the C. beijerinckii flavodoxin. In particular, there is a significant difference in the influence of the protein backbone of the so-called 60s loop region between the two flavodoxins. The E sq/hq difference can be best explained by the lower compensation of the side chain influence by the backbone influence in the D. vulgaris flavodoxin than in the C. beijerinckii flavodoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号