首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have shown earlier a requirement for Ca2+ and calmodulin (CaM) in the H2O2-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKIIα. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281–309) of CaMKII and with siRNA of CaMKIIα attenuated the H2O2-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKIIα siRNA abolished the H2O2-induced IGF-1R phosphorylation. H2O2 treatment also induced Thr286 phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H2O2 on ERK1/2, PKB, and IGF-1R phosphorylation.  相似文献   

2.
3.
Evidence accumulated in recent years has revealed a potential role for reactive oxygen species (ROS) in the pathophysiology of cardiovascular diseases. However, the precise mechanisms by which ROS contribute to the development of these diseases are not fully established. Previous work from our laboratory has indicated that exogenous hydrogen peroxide (H2O2) activates several signaling protein kinases, such as extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase B (PKB) in A10 vascular smooth muscle cells (VSMC). However, the upstream elements responsible for this activation remain unclear. Although a role for epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) in H2O2-induced ERK1/2 signaling has been suggested, the contribution of this PTK or other receptor or nonreceptor PTKs to PKB activation is not well defined in VSMC. In this study, we used pharmacological inhibitors to investigate the role of receptor and Src-family-PTKs in H2O2-induced PKB phosphorylation. AG1478, a specific inhibitor of EGFR, failed to attenuate the H2O2-induced increase in PKB Ser473 phosphorylation, whereas AG1024, an inhibitor of insulin-like growth factor type1 receptor (IGF-1R)-PTK, almost completely blocked this response. H2O2 treatment also enhanced tyrosine phosphorylation of the IGF-1Rbeta subunit, which was significantly inhibited by AG1024 pretreatment of cells. Furthermore, pharmacological inhibition of Src by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole(3,4-d) pyrimidine) decreased PKB phosphorylation. Moreover, H2O2-induced PKB phosphorylation was associated with increased tyrosine phosphorylation of c-Src and Pyk2 in an AG1024- and PP2-inhibitable manner. In conclusion, these data provide evidence of the contribution of IGF-1R-PTK in initiating H2O2-evoked PKB phosphorylation in A10 VSMC, with an intermediary role for c-Src and Pyk2 in this process.  相似文献   

4.
5.
6.
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.  相似文献   

7.
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.  相似文献   

8.
Jiang J  Wang P  An G  Wang P  Song CP 《Plant cell reports》2008,27(2):377-385
SB203580 is a specific inhibitor of p38 mitogen-activated protein (MAP) kinase and has been widely used to investigate the physiological roles of p38 in animal and yeast cells. Here by using an epidermal strip bioassay, laser-scanning confocal microscopy and whole-cell patch clamp analysis, we assess the effects of pyridinyl imidazoles-like SB203580 on the H2O2 signaling in guard cells of Vicia faba L. The results indicated that SB203580 blocks H2O2- or ABA-induced stomatal closure, ABA-induced H2O2 generation, and decrease in K+ fluxing across plasma membrane of Vicia guard cells by application of ABA and H2O2, whereas its analog SB202474 had no effect on these events. Thus, these results suggest that activation of p38-like MAP kinase modulates guard cell ROS signaling in response to stress.  相似文献   

9.
p53 is an important regulator of cell growth and apoptosis and its activity is regulated by phosphorylation. Accordingly, in neonatal rat cardiomyocytes we examined the involvement of p53 in H2O2-induced apoptosis. Treatment with 50–100 μM H2O2 markedly induced apoptosis in cardiomyocytes, as assessed by gel electrophoresis of genomic DNA. To examine whether H2O2 increases p53 phosphorylation in cardiomyocytes, we utilized an antibody that specifically recognizes phosphorylated p53 at serine-15. The level of phosphorylated p53 was markedly increased by 100 μM H2O2 at 30 and 60 min. Using specific protein kinase inhibitors we examined the involvement of protein kinases in p53 phosphorylation in response to H2O2 treatment. However, staurosporine, a broad spectrum inhibitor of protein kinases, SB202190, a specific p38 kinase inhibitor, PD98059, a MAP kinase inhibitor, wortmannin, an inhibitor of DNA-PK and PI3 kinase, SP600125, a JNK inhibitor and caffeine,an inhibitor of ATM and ATR, failed to prevent the H2O2-induced phosphorylation of p53. cDNA microarray revealed that H2O2 markedly increased expression of several p53 upstream modifiers such as the p300 coactivator protein and several downstream effectors such as gadd45, but decreased the expression of MDM2, a negative regulator of p53. Our results suggest that phosphorylation of p53 at serine-15 may be an important signaling event in the H2O2-mediated apoptotic process.  相似文献   

10.
Zn2+ exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn2+-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn2+-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn2+-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn2+-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn2+-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn2+ was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn2+ and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn2+-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR β-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn2+-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.  相似文献   

11.
12.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

13.
《Free radical research》2013,47(9):1004-1012
Abstract

The inhibitory or activating effect of H2O2 on large conductance calcium and voltage-dependent potassium (BKCa) channels has been reported. However, the mechanism by which this occurs is unclear. In this paper, BKCa channels encoded by mouse Slo were expressed in HEK 293 cells and BKCa channel activity was measured by electrophysiology. The results showed that H2O2 inhibited BKCa channel activity in inside-out patches but enhanced BKCa channel activity in cell-attached patches. The inhibition by H2O2 in inside-out patches may be due to oxidative modification of cysteine residues in BKCa channels or other membrane proteins that regulate BKCa channel function. PI3K/AKT signaling modulates the H2O2-induced BKCa channel activation in cell-attached patches. BKCa channels and PI3K signaling pathway were involved in H2O2-induced vasodilation and H2O2-induced vasodilation by PI3K pathway was mainly due to modulation of BKCa channel activity.  相似文献   

14.
Inorganic phosphate (Pi) transport probably represents an important function of bone-forming cells in relation to extracellular matrix mineralization. In the present study, we investigated the effect of prostaglandin D2 (PGD2) on Pi transport activity and its intracellular signaling mechanism in MC3T3-E1 osteoblast-like cells. PGD2 stimulated Na-dependent Pi uptake time- and dose-dependently in MC3T3-E1 cells during their proliferative phase. A protein kinase C (PKC) inhibitor calphostin C partially suppressed the stimulatory effect of PGD2 on Pi uptake. The selective inhibitors of mitogen-activated protein (MAP) kinase pathways such as ERK, p38 and Jun kinases suppressed PGD2-induced Pi uptake. The inhibitors of phosphatidylinositol (PI) 3-kinase and S6 kinase reduced this effect of PGD2, while Akt kinase inhibitor did not. These results suggest that PGD2 stimulates Na-dependent Pi transport activity in the phase of proliferation of osteoblasts. The mechanisms responsible for this effect are activation of PKC, MAP kinases, PI 3-kinase and S6 kinase.  相似文献   

15.
To examine the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and extra-cellular signal-regulated kinase (ERK) in the oxidative stress-induced increase of permeability in endothelial cells, the effects of a p38 MAPK inhibitor (SB203580) and ERK inhibitor (PD90859) on the H2O2-induced increase of permeability in bovine pulmonary artery endothelial cells (BPAEC) were investigated using a two-compartment system partitioned by a semi-permeable filter. H2O2 at 1 mM caused an increase of the permeation rate of fluorescein isothiocyanate (FITC)-labeled dextran 40 through BPAEC monolayers. SB203580 inhibited the H2O2-induced increase of permeability but PD98059 did not, though activation (phosphorylation) of both p38 MAPK and ERK was observed in H2O2-treated cells in Western blot analysis. An H2O2-induced increase of the intracellular Ca2+ concentration ([Ca2+]i) was also observed and an intracellular Ca2+ chelator (BAPTA-AM) significantly inhibited the H2O2-induced increase of permeability. However, it showed no inhibitory effects on the H2O2-induced phosphorylation of p38 MAPK and ERK. The H2O2-induced increase of [Ca2+]i was not influenced by SB203580 and PD98059. These results indicate that the activation of p38 MAPK and the increase of [Ca2+]i are essential for the H2O2-induced increase of endothelial permeability and that ERK is not.  相似文献   

16.
The mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK) and p38, can both contribute to the activation of cytosolic phospholipase A2 (cPLA2). We have investigated the hypothesis that ERK and p38 together or independent of one another play roles in the regulation of cPLA2 in macrophages responding to the oral bacterium Prevotella intermedia or zymosan. Stimulation with bacteria or zymosan beads caused arachidonate release and enhanced in vitro cPLA2 activity of cell lysate by 1.5- and 1.7-fold, respectively, as well as activation of ERK and p38. The specific inhibitor of MAP kinase kinase, PD 98059, and the inhibitor of p38, SB 203580, both partially inhibited cPLA2 activation and arachidonate release induced by bacteria and zymosan. Together, the two inhibitors had additive effects and completely blocked cPLA2 activation and arachidonate release. The present results demonstrate that ERK and p38 both have important roles in the regulation of cPLA2 and together account for its activation in P. intermedia and zymosan-stimulated mouse macrophages.  相似文献   

17.
《Free radical research》2013,47(8):913-924
Abstract

The present study investigated the effects of oxidative stress induced by reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and hydroxyl radical (HO?), on the expression of both BRAK , which is also known as non-ELR motif angiostatic CXC chemokine ligand 14 (CXCL14), in head and neck squamous cell carcinoma (HNSCC) cells. When HNSCC cells were cultured in the presence of ROS, the expression of BRAK was significantly decreased whereas that of IL-8 was increased. Interestingly, the effects on the expression of both genes in HNSCC cells were much greater with HO? than with H2O2. The effects of ROS on both BRAK and IL-8 expression were attenuated by pre-treatment with N-acetyl-L-cysteine (NAC), epidermal growth factor receptor (EGFR), and mitogen-activated protein kinase (MAPK) inhibitors. These results indicate that oxidative stress induced by H2O2 or HO? stimulates angiogenesis and tumuor progression by altering the gene expression of BRAK and IL-8 via the EGFR/MEK/ERK pathway in human HNSCC cells.  相似文献   

18.
19.
Growth hormone (GH) has been reported to be useful to treat heart failure. To elucidate whether GH has direct beneficial effects on the heart, we examined effects of GH on oxidative stress-induced apoptosis in cardiac myocytes. TUNEL staining and DNA ladder analysis revealed that hydrogen peroxide (H2O2)-induced apoptosis of cardiomyocytes was significantly suppressed by the pretreatment with GH. GH strongly activated extracellular signal-regulated kinases (ERKs) in cardiac myocytes and the cardioprotective effect of GH was abolished by inhibition of ERKs. Overexpression of dominant negative mutant Ras suppressed GH-stimulated ERK activation. Overexpression of Csk that inactivates Src family tyrosine kinases also inhibited ERK activation evoked by GH. A broad-spectrum inhibitor of protein tyrosine kinases (PTKs), genistein, strongly suppressed GH-induced ERK activation and the cardioprotective effect of GH against apoptotic cell death. GH induced tyrosine phosphorylation of EGF receptor and JAK2 in cardiac myocytes, and an EGF receptor inhibitor tyrphostin AG1478 and a JAK2 inhibitor tyrphostin B42 completely inhibited GH-induced ERK activation. Tyrphostin B42 also suppressed the phosphorylation of EGF receptor stimulated by GH. These findings suggest that GH has a direct protective effect on cardiac myocytes against apoptosis and that the effect of GH is attributed at least in part to the activation of ERKs through Ras and PTKs including JAK2, Src, and EGF receptor tyrosine kinase.  相似文献   

20.
Ganglioside GM1 has been shown to increase viability of PC12 cells at their induction of oxidative stress by hydrogen peroxide. However, in the presence of inhibitor of tyrosine kinase Trkreceptors K-252a this GM1 effect decreases or virtually disappears. To understand mechanism of the protective effect, there was studied action of H2O2, GM1, and inhibitor K-252a on formation of reactive oxygen species (ROS). It has been shown that ganglioside GM1 decreases significantly the H2O2-induced ROS accumulation in PC12 cells; however, in the presence of inhibitor of tyrosine kinase of Trk-receptors, this GM1 effect is not revealed. It has been found that inhibitors of each of protein kinases present at the signal realization stages following the stages of activation of tyrosine kinase Trk-receptors—Erk 1/2, PI3-kinases, and PKC, decreased the GM1 ability to reduce the H2O2-induced ROS accumulation, while at the combined use of inhibitors of these three protein kinases, the GM1 effect was completely absent. Thus, the ganglioside GM1 antioxidant effect on PC12 is mediated by activation of tyrosine kinase Trk-receptors and protein kinases perceiving signal from this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号