首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CaMKII knockdown attenuates H2O2-induced phosphorylation of ERK1/2, PKB/Akt, and IGF-1R in vascular smooth muscle cells
Authors:Ali Bouallegue  Nihar R Pandey  Ashok K Srivastava  
Institution:aLaboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Technopole Angus Campus;bDepartment of Medicine, University of Montreal, Montreal, QC H1W 4A4, Canada
Abstract:We have shown earlier a requirement for Ca2+ and calmodulin (CaM) in the H2O2-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKIIα. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281–309) of CaMKII and with siRNA of CaMKIIα attenuated the H2O2-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKIIα siRNA abolished the H2O2-induced IGF-1R phosphorylation. H2O2 treatment also induced Thr286 phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H2O2 on ERK1/2, PKB, and IGF-1R phosphorylation.
Keywords:Oxidative stress signaling  H2O2  VSMC  CaMKII  ERK1/2  PKB  Pyk-2  IGF-1R  Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号