首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In response to various neurohumoral substances endothelial cells release nitric oxide (NO), prostacyclin and produce hyperpolarization of the underlying vascular smooth muscle cells, possibly by releasing another factor termed endothelium-derived hyperpolarizing factor (EDHF). EDHF-mediated responses are sensitive to the combination of two toxins, charybdotoxin plus apamin, but do not involve ATP-sensitive or large conductance calcium-activated potassium channels. As hyperpolarization of the endothelial cells is required in order to observe endothelium-dependent hyperpolarization, and electrical coupling through myo-endothelial gap junctions may explain the phenomenon. An alternative explanation is that the hyperpolarization of the endothelial cells causes an efflux of potassium that in turn activates the inwardly rectifying potassium conductance and the Na+/K+ pump of the smooth muscle cells. Endothelial cells produce metabolites of the cytochrome P450-monooxygenase that activate BKCa, and induce hyperpolarization of coronary arterial smooth muscle cells. The elucidation of the mechanism underlying endothelium-dependent hyperpolarization and the discovery of specific inhibitors of the phenomenon are prerequisite for the understanding of the physiological role of this alternative endothelial pathway involved in the control of vascular tone in health and disease.  相似文献   

2.
Vascular endothelial cells play a fundamental role in the control of vascular tone, and therefore in the control of local blood flow, by releasing various contracting (endothelin, prostaglandins) and relaxing (prostacycline, NO) factors. An additional mechanism involving the hyperpolarization of the vascular smooth muscle cells is observed mainly in the coronary vascular bed and in the periphery. This phenomenon was attributed to an elusive endothelial factor called endothelium-derived hyperpolarizing factor (EDHF). This mechanism is now better understood. It involves first an increase in the endothelial intracellular concentration of calcium, the activation of endothelial potassium channels and the resulting hyperpolarization of the endothelial cells. The hyperpolarization of the endothelial cells is transmitted to the smooth muscle cells by different pathways. This hyperpolarization propagates along the vessels not only via the smooth muscle cells but also via the endothelial cells. Therefore, the endothelial layer can also be considered as a conducting tissue. The discovery of specific inhibitors of the endothelial cell hyperpolarization allows the assessment of the contribution of EDHF-mediated responses in the control of vascular tone.  相似文献   

3.
Activation of endothelial proteinase-activated receptor 2 (PAR-2) relaxes vascular smooth muscle (VSM) and causes hypotension by nitric oxide (NO)-prostanoid-dependent and -independent mechanisms. We investigated whether endothelium-dependent hyperpolarization of VSM was the mechanism whereby resistance caliber arteries vasodilated independently of NO. VSM membrane potentials and isometric tension were measured concurrently to correlate the electrophysiological and mechanical changes in murine small caliber mesenteric arteries. In uncontracted arteries, the PAR-2 agonist, SLIGRL-NH2 (0.1 to 10 micromol/L), hyperpolarized the VSM membrane potential only in endothelium-intact arterial preparations. This response was unaltered by treatment of arteries with inhibitors of NO synthases (L-NAME), soluble guanylyl cyclase (ODQ), and cyclooxygenases (indomethacin). L-NAME, ODQ, and indomethacin also failed to inhibit SLIGRL-NH2-induced hyperpolarization and of cirazoline-contracted mesenteric arteries. However, in blood vessels that were depolarized and contracted with 30 mmol/L KCl, the effects of the SLIGRL-NH2 on membrane potential and tension were not observed. SLIGRL-NH2-induced hyperpolarization and relaxation was inhibited completely by the combination of apamin plus charybdotoxin, but only partially inhibited after treatment with the combination of barium plus ouabain, suggesting an important role for SKCa and IKCa channels and a lesser role for Kir channels and Na+/K+ ATPases in the hyperpolarization response. We concluded that activation of endothelial PAR-2 hyperpolarized the vascular smooth muscle (VSM) cells of small caliber arteries, without requiring the activation of NO synthases, cyclooxygenases, or soluble guanylyl cyclase. Indeed, this hyperpolarization may be a primary mechanism for PAR-2-induced hypotension in vivo.  相似文献   

4.
Mediator contributions to hypoxic dilation of rat gracilis muscle resistance arteries were determined by measuring dilation, vascular smooth muscle hyperpolarization, and metabolite production after incremental hypoxia. Nitric oxide (NO) synthase inhibition abolished responses to mild hypoxia, whereas COX inhibition impaired responses to more severe hypoxia by 77%. Blocking 20-hydroxyeicosatetraenoic acid (20-HETE) impaired responses to moderate hypoxia. With only NO systems intact, responses were maintained with mild hypoxia (88% normal) mediated via K(Ca) channels. When only COX pathways were intact, responses to moderate-severe hypoxia were largely retained (79% of normal) mediated via K(ATP) channels. Vessel responses to moderate hypoxia were retained with only 20-HETE systems intact mediated via K(Ca) channels. NO production increased 5.6-fold with mild hypoxia; greater hypoxia was without further effect. With increased hypoxia, 20-HETE levels fell to 40% of control values. 6-keto-PGF(1alpha) levels were not altered with mild hypoxia, but increased 4.6-fold with severe hypoxia. These results suggest vascular reactivity to progressive hypoxia represents an integration of NO production (mild hypoxia), PGI(2) production (severe hypoxia), and reduced 20-HETE levels (moderate hypoxia).  相似文献   

5.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

6.
Garland  C. J. 《Neurophysiology》2003,35(3-4):161-168
Endothelium-dependent hyperpolarizing factor (EDHF) underlies nitric oxide and prostacyclin-independent arterial relaxation. As the influence of EDHF increases with decreasing artery size, it plays an important role in vascular regulation. Initially suggested to represent a diffusible factor, EDHF is now thought to represent a variable input in different arteries from a factor(s) and the spread of hyperpolarizing current from the endothelium to the smooth muscle. Key to unravelling this pathway has been the demonstration that hyperpolarization within the endothelium can be blocked using a combination of the KCa channel blockers, apamin and charibdotoxin. As a consequence, the relaxation of vascular smooth muscle, which represents the end point of the EDHF pathway, is blocked. This review discusses the evidence that a differential distribution of ion channels between the smooth muscle and endothelial cells underlies the EDHF pathway. Also, that a diffusible factor, which may well be K ions released by the endothelium, acts alongside the spread of hyperpolarization through myoendothelial gap junctions to explain EDHF-evoked smooth muscle relaxation. While the relative importance of each of these two components can vary between arteries, together they can explain the EDHF phenomenon.  相似文献   

7.
Hyperpolarizing large-conductance, Ca(2+)-activated K(+) channels (BK) are important modulators of vascular smooth muscle and endothelial cell function. In vascular smooth muscle cells, BK are composed of pore-forming alpha subunits and modulatory beta subunits. However, expression, composition, and function of BK subunits in endothelium have not been studied so far. In patch-clamp experiments we identified BK (283 pS) in intact endothelium of porcine aortic tissue slices. The BK opener DHS-I (0.05-0.3 micromol/l), stimulating BK activity only in the presence of beta subunits, had no effect on BK in endothelium whereas the alpha subunit selective BK opener NS1619 (20 micromol/l) markedly increased channel activity. Correspondingly, mRNA expression of the beta subunit was undetectable in endothelium, whereas alpha subunit expression was demonstrated. To investigate the functional role of beta subunits, we transfected the beta subunit into a human endothelial cell line (EA.hy 926). beta subunit expression resulted in an increased Ca(2+) sensitivity of BK activity: the potential of half-maximal activation (V(1/2)) shifted from 73.4 mV to 49.6 mV at 1 micromol/l [Ca(2+)](i) and an decrease of the EC(50) value for [Ca(2+)](i) by 1 microM at +60 mV was observed. This study demonstrates that BK channels in endothelium are composed of alpha subunits without association to beta subunits. The lack of the beta subunit indicates a substantially different channel regulation in endothelial cells compared to vascular smooth muscle cells.  相似文献   

8.
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.  相似文献   

9.
In skeletal muscle arterioles, the pathway leading to non-nitric oxide (NO), non-prostaglandin-mediated endothelium-derived hyperpolarizing factor (EDHF)-type dilations is not well characterized. To elucidate some of the steps in this process, simultaneous changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and the diameter of rat gracilis muscle arterioles (approximately 60 microm) to acetylcholine (ACh) were measured by fura 2 microfluorimetry (in the absence of NO and prostaglandins). ACh elicited rapid increases in endothelial [Ca(2+)](i) (101 +/- 7%), followed by substantial dilations (73 +/- 2%, coupling time: 1.3 +/- 0.2 s) that were prevented by endothelial loading of an intracellular Ca(2+) chelator [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. Arteriolar dilations to ACh were also inhibited by intraluminal administration of the Ca(2+)-activated K(+) (K(Ca)) channel blockers charybdotoxin plus apamin or by palmitoleic acid, an uncoupler of myoendothelial gap junctions without affecting changes in endothelial [Ca(2+)](i). The presence of large conductance K(Ca) channels on arteriolar endothelial cells was demonstrated with immunohistochemisty. We propose that in skeletal muscle arterioles, EDHF-type mediation is evoked by an increase in endothelial [Ca(2+)](i), which by activating endothelial K(Ca) channels elicits hyperpolarization that is conducted via myoendothelial gap junctions to the smooth muscle resulting in decreases in [Ca(2+)](i) and consequently dilation.  相似文献   

10.
Apple procyanidins (AP), one of the polyphenol-rich compounds, showed an endothelial-dependent vasorelaxation in rat aorta, but the mechanisms of beneficial effects are still unclear. The present study was designed to clarify the potential role of AP in rat aorta endothelial cells (RAECs). The treatment of RAECs with AP (1-10 μg/ml) resulted in a dose-dependent hyperpolarization with a maximum effect at 10 μg/ml, and for this reason, AP (10 μg/ml) was used in all the following experiments. AP-induced hyperpolarization was significantly inhibited by pretreatment of nonspecific K(+) inhibitor, tetraethyl ammonium chloride or specific K(+) channel inhibitors, iberiotoxin, glibenclamide, 4-aminopyridine and BaCl(2), as well as by high KCl or Ca(2+)-free solution. AP-induced hyperpolarization was also proved using 64-channel multielectrode dish system that can monitor a direct and real-time change of membrane potential. Furthermore, AP treatment caused a significant increase of nitric oxide (NO) production and cyclic guanosine monophosphate levels via endothelial NO synthase messenger RNA expression. The NO production was inhibited by N(G)-monoethyl-l-arginine or Ca(2+)-free solution and was completely abolished by their combination. Also, AP inhibited endothelial proliferation, while the effect was significantly abolished by N(G)-monoethyl-l-arginine or tetraethyl ammonium chloride. These findings suggest that AP induces both hyperpolarization of RAECs via multiple activation of K(+) channels and activation of NO/cyclic guanosine monophosphate pathway via increasing NO production or is responsible for antiangiogenic effect. Diminishment of hyperpolarization as well as NO production of AP in Ca(2+)-free solution implicated that AP would play a crucial role in promoting Ca(2+) influx into endothelial cells so as to promote both actions.  相似文献   

11.
In the skin of humans and rodents, local pressure induces localized cutaneous vasodilation, which may be protective against pressure-induced microvascular dysfunction and lesion formation. Once activated by the local pressure application, capsaicin-sensitive nerve fibers release neuropeptides that act on the endothelium to synthesize and release nitric oxide (NO) and prostaglandins, leading to the development of the cutaneous pressure-induced vasodilation (PIV). The present study was undertaken to test in vivo the hypothesis that PIV is mediated or modulated by differential activation of K+ channels in anesthetized rats using pharmacological methods. Local pressure was applied at 11.1 Pa/s. Endothelium-independent and -dependent vasodilation were tested using iontophoretic delivery of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively, and was correlated with PIV response. PIV was reduced after systemic administration of tetraethylammonium (a nonspecific K+ channel blocker), iberiotoxin [a specific large-conductance Ca2+-activated K+ (BKCa) channel blocker], and glibenclamide [a specific ATP-sensitive K+ (KATP) channel blocker], whereas PIV was unchanged by apamin (a specific small-conductance Ca2+-activated K+ channel blocker) and 4-aminopyridine (a specific voltage-sensitive K+ channel blocker). The responses to SNP and ACh were reduced by iberiotoxin but were unchanged by glibenclamide. We conclude that the cellular mechanism of PIV in skin involves BKCa and KATP channels. We suggest that the opening of BKCa and KATP channels contributes to the hyperpolarization of vascular smooth muscle cells to produce PIV development mainly via the NO and prostaglandin pathways, respectively.  相似文献   

12.
Nitric oxide and atherosclerosis.   总被引:12,自引:0,他引:12  
Endothelial dysfunction has been shown in a wide range of vascular disorders including atherosclerosis and related diseases. Here, we examine and address the complex relationship among nitric oxide (NO)-mediated pathways and atherogenesis. In view of the numerous pathophysiological actions of NO, abnormalities could potentially occur at many sites: (a) impairment of membrane receptors in the arterial wall that interact with agonists or physiological stimuli capable of generating NO; (b) reduced concentrations or impaired utilization of l-arginine; (c) reduction in concentration or activity both of inducible and endothelial NO synthase; (d) impaired release of NO from the atherosclerotic damaged endothelium; (e) impaired NO diffusion from endothelium to vascular smooth muscle cells followed by decreased sensitivity to its vasodilator action; (f) local enhanced degradation of NO by increased generation of free radicals and/or oxidation-sensitive mechanisms; and (g) impaired interaction of NO with guanylate cyclase and consequent limitation of cyclic GMP production. Therefore, one target for new drugs should be the preservation or restoration of NO-mediated signaling pathways in arteries. Such novel therapeutic strategies may include administration of l-arginine/antioxidants and gene-transfer approaches.  相似文献   

13.
The activation of big-conductance K(Ca) channels in vascular smooth muscle cells by carbon monoxide (CO) has been demonstrated previously. One specific target of CO on K(Ca) channel proteins is the histidine residue. The roles of other amino acid residues on the functionality of K(Ca) channels, as well as their reactions to CO, have been unclear. In the present study, the cell-free single channel recording technique was used to investigate the chemical modification of K(Ca) channels by CO and other chemical agents. The modification of negatively charged carboxyl groups and the epsilon -amino group of lysine did not affect the open probability, but decreased single-channel conductance of K(Ca) channels. When sulfhydryl groups of cysteine were modified with N-ethylmaleimide, the open probability of K(Ca) channels was decreased, but single-channel conductance was not affected. None of the above chemical modifications affected the CO-induced increase in the open probability of K(Ca) channels. However, N-ethylmaleimide treatment reduced the stimulatory effect of nitric oxide (NO) on K(Ca) channels. Finally, pretreatment of smooth muscle cells with NO abolished the effects of subsequently applied CO on K(Ca) channel proteins. Our study demonstrates that CO and NO acted on different amino acid residues of K(Ca) channel proteins. The interaction of CO and NO determines the functional status of K(Ca) channels in vascular smooth muscle cells  相似文献   

14.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2? released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30 min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2? and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

15.
16.
The nitric oxide (NO)/cGMP pathway in the vascular smooth muscle cell (VSMC) is an important cellular signaling system for the regulation of VSMC relaxation. We present a mathematical model to investigate the underlying mechanisms of this pathway. The model describes the flow of NO-driven signal transduction: NO activation of soluble guanylate cyclase (sGC), sGC- and phosphodiesterase-catalyzed cGMP production and degradation, cGMP-mediated regulation of protein targets including the Ca2+-activated K+ (KCa) channel, and the myosin contractile system. Model simulations reproduce major NO/cGMP-induced VSMC relaxation effects, including intracellular Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation and force generation. Using the model, we examine several testable principles. 1) Rapid sGC desensitization is caused by end-product cGMP feedback inhibition; a large fraction of the steady-state sGC population is in an inactivated intermediate state, and cGMP production is limited well below maximum. 2) NO activates the K(Ca) channel with both cGMP-dependent and -independent mechanisms; moderate NO concentration affects the K(Ca) via the cGMP-dependent pathway, whereas higher NO concentration is accommodated by a cGMP-independent mechanism. 3) Chronic NO synthase inhibition may cause underexpressions of K+ channels including inward rectifier and K(Ca) channels. 4) Ca2+ desensitization of the contractile system is distinguished from Ca2+ sensitivity of myosin phosphorylation. The model integrates these interactions among the heterogeneous components of the NO signaling system and can serve as a general modeling framework for studying NO-mediated VSMC relaxation under various physiological and pathological conditions. New data can be readily incorporated into this framework for interpretation and possible modification and improvement of the model.  相似文献   

17.
Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca(2+) oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca(2+) oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.  相似文献   

18.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

19.
The effects of calcitonin gene-related peptide (CGRP) on constriction frequency, smooth muscle membrane potential (V(m)), and endothelial V(m) of guinea pig mesenteric lymphatics were examined in vitro. CGRP (1-100 nM) caused an endothelium-dependent decrease in the constriction frequency of perfused lymphatic vessels. The endothelium-dependent CGRP response was abolished by the CGRP-1 receptor antagonist CGRP-(8-37) (1 microM) and pertussis toxin (100 ng/ml). This action of CGRP was also blocked by the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NNA; 10 microM), an action that was reversed by the addition of L-arginine (100 microM). cGMP, adenylate cyclase, cAMP-dependent protein kinase (PKA), and ATP-sensitive K+ (K+(ATP)) channels were all implicated in the endothelium-dependent CGRP response because it was abolished by methylene blue (20 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM), dideoxyadenosine (10 microM), N-[2-(p-bromociannamylamino)-ethyl]-5-isoquinolinesulfonamide-dichloride (H89; 1 microM) and glibenclamide (10 microM). CGRP (100 nM), unlike acetylcholine, did not alter endothelial intracellular Ca2+ concentration or V(m). CGRP (100 nM) hyperpolarized the smooth muscle V(m), an effect inhibited by L-NNA, H89, or glibenclamide. CGRP (500 nM) also caused a decrease in constriction frequency. However, this was no longer blocked by CGRP-(8-37). CGRP (500 nM) also caused smooth muscle hyperpolarization, an action that was now not blocked by L-NNA (100 microM). It was most likely mediated by the activation of the cAMP/PKA pathway and the opening of K+(ATP) channels because it was abolished by H89 or glibenclamide. We conclude that CGRP, at low to moderate concentrations (i.e., 1-100 nM), decreases lymphatic constriction frequency primarily by the stimulation of CGRP-1 receptors coupled to pertussis toxin-sensitive G proteins and the release of NO from the endothelium or enhancement of the actions of endogenous NO. At high concentrations (i.e., 500 nM), CGRP also directly activates the smooth muscle independent of NO. Both mechanisms of activation ultimately cause the PKA-mediated opening of K+(ATP) channels and resultant hyperpolarization.  相似文献   

20.
Calcium signaling and oxidant stress in the vasculature   总被引:11,自引:0,他引:11  
Recent evidence suggests that oxidant stress plays a major role in several aspects of vascular biology. Oxygen free radicals are implicated as important factors in signaling mechanisms leading to vascular pathologies such as postischemic reperfusion injury and atherosclerosis. The role of intracellular Ca(2+) in these signaling events is an emerging area of vascular research that is providing insights into the mechanisms mediating these complex physiological processes. This review explores sources of free radicals in the vasculature, as well as effects of free radicals on Ca(2+) signaling in vascular endothelial and smooth muscle cells. In the endothelium, superoxides enhance and peroxides attenuate agonist-stimulated Ca(2+) responses, suggesting differential signaling mechanisms depending on radical species. In smooth muscle cells, both superoxides and peroxides disrupt the sarcoplasmic reticulum Ca(2+)-ATPase, leading to both short- and long-term effects on smooth muscle Ca(2+) handling. Because vascular Ca(2+) signaling is altered by oxidant stress in ischemia-related disease states, understanding these pathways may lead to new strategies for preventing or treating arterial disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号