首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings

Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.

Conclusion/Significance

Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.  相似文献   

2.
Bone is a common metastatic site for many cancers. Tumor cells located in the bone marrow cavity disturb the natural balance (bone remodelling) established between new bone formation performed by osteoblasts and bone resorption carried out by osteoclasts. Tumor cells produce many factors including growth factors and cytokines (PTHrP, ET-1, BMPs, others...) that stimulate either ostoclast activity leading to osteolytic lesions or osteoblast activity generating osteosclerotic bone metastases. Growth factors released from resorbed bone matrix or throughout osteoblastic bone formation sustain tumor growth. Therefore, bone metastases are the site of vicious cycles wherein tumor growth and bone metabolism sustain each other.  相似文献   

3.
Human tumor cells inoculated into the arterial circulation of immunocompromised mice can reliably cause bone metastases, reproducing many of the clinical features seen in patients. Animal models permit the identification of tumor-produced factors, which act on bone cells, and of bone-derived factors. Local interactions stimulated by these factors drive a vicious cycle between tumor and bone that perpetuates skeletal metastases. Bone metastases can be osteolytic, osteoblastic, or mixed. Parathyroid hormone-related protein, PTHrP, is a common osteolytic factor, while vascular endothelial growth factor and interleukins 8 and 11 also contribute. Osteoblastic metastases can be caused by tumor-secreted endothelin-1, ET-1. Other potential osteoblastic factors include bone morphogenetic proteins, platelet-derived growth factor, connective tissue growth factor, stanniocalcin, N-terminal fragments of PTHrP, and adrenomedullin. Osteoblasts are the main regulators of osteoclasts, and stimulation of osteoblast proliferation can increase osteoclast formation and activity. Thus, combined expression of osteoblastic and osteolytic factors can lead to mixed metastases or to increased osteolysis. Prostate-specific antigen is a protease, which can cleave PTHrP and thus change the balance of osteolytic versus osteoblastic responses to metastatic tumor cells. Bone itself stimulates tumor by releasing insulin-like growth factors and transforming growth factor-beta. Secreted factors transmit the interactions between tumor and bone. They provide novel targets for therapeutic interactions to break the vicious cycle of bone metastases. Clinically approved bisphosphonate anti-resorptive drugs reduce the release of active factors stored in bone, and PTHrP-neutralizing antibody, inhibitors of the RANK ligand pathway, and ET-1 receptor antagonist are in clinical trials. These adjuvant therapies act on bone cells, rather than the tumor cells. Recent gene array experiments identify additional factors, which may in the future prove to be clinically important targets.  相似文献   

4.
Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases.  相似文献   

5.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

6.
In adults, bone is the preferential target site for metastases from primary cancers of prostate, breast, lungs and thyroid. The tendency of these cancers to metastasize to bone is determined by the anatomical distribution of the blood vessels, by the genetic profile of the cancer cells and by the biological characteristics of the bone microenvironment that favour the growth of metastatic cells of certain cancers. Metastases to bone may have either an osteolytic or an ostoblastic phenotype. The interaction in the bone microenvironment between biological factors secreted by metastatic cells, and by osteoblasts and osteoclasts, and the osteolytic and osteoblastic factors released from the organic matrix mediate a vicious cycle characterized by metastatic growth and by ongoing progressive bone destruction. This interaction determines the phenotype of the metastatic bone disease.  相似文献   

7.
Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.  相似文献   

8.
Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis.  相似文献   

9.
10.
Distant metastases occur when non‐small cell lung cancer (NSCLC) is at late stages. Bone metastasis is one of the most frequent metastases of NSCLC and leads to poor prognosis. It has been reported that high expression of BMP2 in NSCLC correlates with poor survival, but whether BMP2 contributes to NSCLC bone metastasis remains largely unknown. The activation of BMP signalling is found in metastatic bone tumours of mice Lewis lung carcinoma and predicts poor survival in human NSCLC. BMP2 signalling activation can enhance bone metastasis of Lewis lung carcinoma. Moreover, BMP2 secreted by stroma fibroblasts can promote the migration and invasion of NSCLC cells. Besides, in combination with pre‐osteoblast and LLCs, BMP2 could enhance the differentiation of macrophages into osteoclasts to play roles in the osteolytic mechanism of NSCLC bone metastasis. Interestingly, NSCLC cells can also enrich BMP2 to pre‐osteoblasts to function in the osteoblastic mechanism. Our results firstly demonstrate the detailed mechanisms about what roles BMP2 signalling play in enhancing NSCLC bone metastases. These findings provide a new potential therapy choice for preventing bone metastases of NSCLC via the inhibition of BMP2 signalling.  相似文献   

11.
We investigated the utility of CWR22 human prostate cancer cells for modeling human metastatic prostate cancer, specifically their ability to induce bone formation following intra-tibial injections in the nude rat. Prostate cancer is unique in regard to its tropism for bone and ability to induce new bone formation. In contrast to humans, other mammalian species rarely develop prostatic cancer spontaneously upon aging and do not have the propensity for bone metastasis that is the hallmark of cancer malignancy in men. We chose human prostate cancer cell line CWR22 based on its properties, which closely resemble all of the features that characterize the early stages of prostatic cancer in human patients including slow growth rate, hormone dependence/independence and secretion of prostate-specific antigen. When CWR22 cells were injected directly into the proximal tibia of immunodeficient male rats, both osteoblastic and osteolytic features became evident after 4 to 6 weeks, with elevated levels of serum prostate-specific antigen. However, osteosclerosis dominates the skeletal response to tumor burden. Radiological and histological evidence revealed osteosclerotic lesions with trabeculae of newly formed bone lined by active osteoblasts and surrounded by tumor cells. Toward the end of the 7-week study, osteolytic bone lesions become more evident on X-rays. Paraffin and immunohistochemical evaluations revealed mature bone matrix resorption as evidenced by the presence of many tartrate resistant acid phosphatase positive multinucleated osteoclasts. We conclude that the CWR22 human prostate cell line used in an intra-tibial nude rat model provides a useful system to study mechanisms involved in osteoblastic and osteolytic bony metastases. This type of in vivo model that closely mimics all major features of metastatic disease in humans may provide a critical tool for drug development efforts focused on developing integrated systemic therapy targeting the tumor in its specific primary or/and metastatic microenvironments. In addition to targeting bone marrow stroma, this strategy will help to overcome classical drug resistance seen at the sites of prostate cancer metastasis to bones.  相似文献   

12.
Tumor cells frequently have pronounced effects on the skeleton including bone destruction, bone pain, hypercalcemia, and depletion of bone marrow cells. Despite the serious sequelae associated with skeletal metastasis, the mechanisms by which tumor cells alter bone homeostasis remain largely unknown. In this study, we tested the hypothesis that the disruption of bone homeostasis by tumor cells is due in part to the ability of tumor cells to upregulate osteopontin (OPN) mRNA in osteoblasts. Conditioned media were collected from tumor cells that elicit either osteolytic (MCF-7, PC-3) or osteoblastic responses (LNCaP) in animal models and their effects on OPN gene expression were compared using an osteoblast precursor cell line, MC3T3-E1 cells. Secretory products from osteolytic but not osteoblastic tumor cell lines were demonstrated to upregulate OPN in osteoblasts while inhibiting osteoblast proliferation and differentiation. Signal transduction studies revealed that regulation of OPN was dependent on both protein kinase C (PKC) and the mitogen-activated protein (MAP) kinase cascade. These results suggest that the upregulation of OPN may play a key role in the development of osteolytic lesions. Furthermore, these results suggest that drugs that prevent activation of the MAP kinase pathway may be efficacious in the treatment of osteolytic metastases.  相似文献   

13.
A distinct feature of human prostate cancer (PCa) is the development of osteoblastic (bone-forming) bone metastases. Metastatic growth in the bone is supported by factors secreted by PCa cells that activate signaling networks in the tumor microenvironment that augment tumor growth. To better understand these signaling networks and identify potential targets for therapy of bone metastases, we characterized the secretome of a patient-derived xenograft, MDA-PCa-118b (PCa-118b), generated from osteoblastic bone lesion. PCa-118b induces osteoblastic tumors when implanted either in mouse femurs or subcutaneously. To study signaling molecules critical to these unique tumor/microenvironment-mediated events, we performed mass spectrometry on conditioned media of isolated PCa-118b tumor cells, and identified 26 secretory proteins, such as TGF-β2, GDF15, FGF3, FGF19, CXCL1, galectins, and β2-microglobulin, which represent both novel and previously published secreted proteins. RT-PCR using human versus mouse-specific primers showed that TGFβ2, GDF15, FGF3, FGF19, and CXCL1 were secreted from PCa-118b cells. TGFβ2, GDF15, FGF3, and FGF19 function as both autocrine and paracrine factors on tumor cells and stromal cells, that is, endothelial cells and osteoblasts. In contrast, CXCL1 functions as a paracrine factor through the CXCR2 receptor expressed on endothelial cells and osteoblasts. Thus, our study reveals a complex PCa bone metastasis secretome with paracrine and autocrine signaling functions that mediate cross-talk among multiple cell types within the tumor microenvironment.A distinct feature of human prostate cancer (PCa)1 with lethal potential is the development of metastases in bone with a bone-forming phenotype (1). This property of PCa bone metastasis suggests that PCa cells have unique interactions with cells in the bone microenvironment. Cells that are known to be present in the bone microenvironment include osteoblasts, osteoclasts, adipocytes, fibroblasts, and endothelial cells. Communication between PCa cells and each of these cells in the microenvironment is known to promote metastatic growth. This communication involves metastatic PCa cells that secrete factors to affect stromal cells in the bone microenvironment. The tumor-modified stromal cells may further alter the properties of the PCa cells to allow them to progress in the bone environment (1). Determining how secretory proteins from the metastatic PCa cells affect the PCa/stromal communication network will lead to the development of strategies to treat bone metastases.Although men with PCa and bone metastasis most frequently present with osteoblastic bone lesions, the commonly-used PCa cell lines to study metastatic properties, for example, PC3 and C4–2B, induce osteolytic or mixed osteoblastic/osteolytic lesions, respectively, when the cells are implanted into mouse femurs or tibia (2). In contrast, the PCa-118b patient-derived xenograft (PDX), generated from an osteoblastic bone lesion of a patient with PCa and bone metastasis, shows phenotypic characteristics similar to the tumor from which it was derived, including induction of a strong osteoblastic response when implanted into femurs (3). Interestingly, PCa-118b cells are also able to induce ectopic bone formation when implanted subcutaneously (3, 4). The capacity of PCa-118b cells to induce bone formation, in which human tumor cells interact with the murine stromal microenvironment, makes this PDX an ideal model system to study tumor-microenvironment signaling pathways that create a bone-like tumor microenvironment conducive to metastatic PCa growth.In this study, we identified secreted factors from the conditioned medium of isolated PCa-118b cells by mass spectrometry. A total of 26 secretory proteins, including cytokines and growth factors, were identified. Human- and mouse-specific PCR probes were used to identify the cells that expressed these factors. Analysis of the receptor for the corresponding secreted factor determined whether the factor exerted activities in a paracrine and/or autocrine manner. The effects of selected factors on PCa cells or stromal cells, including osteoblasts and endothelial cells, were also examined. Our studies showed that PCa-118b cells secreted multiple factors that establish an autocrine or paracrine signaling network that can mediate cross-talk among multiple cell types within the bone microenvironment.  相似文献   

14.
Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.  相似文献   

15.
Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.  相似文献   

16.
Bone metastases, present in 70% of patients with metastatic breast cancer, lead to skeletal disease, fractures and intense pain, which are all believed to be mediated by tumor cells. Engraftment of tumor cells is supposed to be preceded by changes in the target tissue to create a permissive microenvironment, the pre-metastatic niche, for the establishment of the metastatic foci. In bone metastatic niche, metastatic cells stimulate bone consumption resulting in the release of growth factors that feed the tumor, establishing a vicious cycle between the bone remodeling system and the tumor itself. Yet, how the pre-metastatic niches arise in the bone tissue remains unclear. Here we show that tumor-specific T cells induce osteolytic bone disease before bone colonization. T cells pro-metastatic activity correlate with a pro-osteoclastogenic cytokine profile, including RANKL, a master regulator of osteoclastogenesis. In vivo inhibition of RANKL from tumor-specific T cells completely blocks bone loss and metastasis. Our results unveil an unexpected role for RANKL-derived from T cells in setting the pre-metastatic niche and promoting tumor spread. We believe this information can bring new possibilities for the development of prognostic and therapeutic tools based on modulation of T cell activity for prevention and treatment of bone metastasis.  相似文献   

17.
Autotaxin (ATX) is a tumor cell motility-stimulating factor originally isolated from melanoma cell supernatant that has been implicated in regulation of invasive and metastatic properties of cancer cells. Recently, we showed that ATX is identical to lysophospholipase D, which converts lysophosphatidylcholine to a potent bioactive phospholipid mediator, lysophosphatidic acid (LPA), raising the possibility that autocrine or paracrine production of LPA by ATX contributes to tumor cell motility. Here we demonstrate that LPA and ATX mediate cell motility-stimulating activity through the LPA receptor, LPA(1). In fibroblasts isolated from lpa(1)(-/-) mice, but not from wild-type or lpa(2)(-/-), cell motility stimulated with LPA and ATX was completely absent. In the lpa(1)(-/-) cells, LPA-stimulated lamellipodia formation was markedly diminished with a concomitant decrease in Rac1 activation. LPA stimulated the motility of multiple human cancer cell lines expressing LPA(1), and the motility was attenuated by an LPA(1)-selective antagonist, Ki16425. The present study suggests that ATX and LPA(1) represent potential targets for cancer therapy.  相似文献   

18.
BACKGROUND: The skeleton is the most common site of colonization by metastatic cancers. Zoledronic acid (ZA) has been shown to be effective for the treatment of bone metastases regardless of whether the bone lesions are osteolytic or osteoblastic. Biochemical markers of bone turnover may be useful tools to quantify the degree of bone remodeling in the presence of bone metastases. The aim of this work was to establish the correlation between tumor dispersion (bioluminescence) and biochemical markers of bone turnover in two osteolytic and osteoblastic metastasis models in mice. METHODS: The A549M1 cell line that produces osteolytic metastases and the LADOB cell line extracted from a patient with a lung carcinoma and osteoblastic metastases cells were retrovirally transduced with a luciferase reporter gene for in vivo image analysis. Forty-four-week–old mice were inoculated in the left cardiac ventricle with A549M1 or LADOB cells. Twenty mouse of each group were treated with a single dose of ZA (70 μg/kg) 5 days after i.c. Ten animals of each group were sacrificed at 21 and 28 days postinoculation in A549M1 and 60 and 75 days in the LADOB assay. Bioluminescence analysis was quantified 7, 14, 21 ,and 28 days postinoculation in A549M1 mice and 33, 45, 60, and 75 days after inoculation in LADOB mice. Osteocalcin (BGP), aminoterminal propeptide of procollagen I (PINP), carboxiterminal telopeptide of type I collagen (CTX), and 5b isoenzyme of tartrate-resistant acid phosphatase were measured by ELISA (IDS, UK). RESULTS: Bioluminescence imaging revealed a significant increase of tumor burden on time in both osteolytic and osteoblastic mice models. ZA administration resulted in a significant decrease in tumor burden at 21 and 28 days in the A549M1 animals and 60 and 70 days postinoculation in the LADOB line. Biomarkers levels were significantly increased in the untreated group at every point in the osteolytic model. In the osteoblastic model, 2 months after inoculation, all biomarkers were significantly increased. However, 2.5 months postinoculation, only PINP and CTX were significantly increased. Serum bone remodeling markers decreased in ZA-treated mice as compared with tumor groups in both models. With respect to the correlation between bone turnover markers and tumor burden, in the osteolytic model, PINP and BGP demonstrate a strong correlation with bioluminescence in both tumoral and ZA animals, and only CTX was significantly associated with bioluminescence in the group of animals that were not treated with ZA. CONCLUSIONS: We found that the best biomarkers for the diagnosis of both osteolytic and osteoblastic metastasis are formation markers, especially BGP. Moreover, these markers can be useful in the follow-up of the treatment with ZA in both types of metastasis.  相似文献   

19.

Background

Breast to bone metastases frequently induce a “vicious cycle” in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.

Methodology/Principal Findings

To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays).

Conclusion/Significance

Collectively, these studies identify a novel “mini-vicious cycle” between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.  相似文献   

20.
It is a long-standing clinical observation that the bone corresponds to the prevalent site for metastatic growth of prostate cancer. In addition, bone metastases of this malignancy produce a potent blastic reaction, in contrast to the overwhelming majority of other osteotropic neoplasms, whose metastases are generally associated with an osteolytic reaction. Osteoblastic metastases represent almost always the first and, frequently, the exclusive site of disease progression to hormone refractory stage, stage D3. Moreover, the number of skeletal metastatic foci is the most powerful independent prognostic factor associated with a limited response to hormone ablation therapy and poor survival of advanced prostate cancer. It is noteworthy that disease progression to hormone refractory stage occurs almost always in osteoblastic metastases. These clinical observations suggested that the osteoblastic reaction is possibly not an innocent bystander of the metastatic prostate tumour growth, simply suffering its consequences, but it may in fact facilitate the efforts of metastatic cells to expand their population. An extensive line of research in the pathophysiology of osteoblastic metastases has established that the local blastic reaction involves the uPA/plasmin/IGF/IGFBP-3/TGFbs bioregulation system which can stimulate both the growth of osteoblasts and prostate cancer cells. Furthermore, we were the first to characterize osteoblast-derived 'survival factors' able to rescue metastatic prostate cancer cells from chemotherapy-induced apoptosis. These data resulted in the development of a novel concept of an anti-survival factor therapy, namely an anti-IGF-1 therapy, which has provided encouraging preliminary data in a phase II clinical trial with terminally-ill hormone/chemotherapy-resistant prostate cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号