首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Right coronary artery bypass restores blood flow through heart tissues. This also induces changes in flow leading to its failure. By this work the sites which are prone to such changes are localized. The bypass models are developed from transparent silicon rubber of elastic properties similar to arterial tissues. Flow visualization is carried out by photoelasticity technique by using dilute solution of vanadium pentoxide. This analysis carried out under pulsatile flow conditions shows that the proximal stenotic region continues to contribute to the alteration in flow in the hood region of the bypass. Thus making its proximal and distal regions prone to flow-induced changes, which may lead to its blockage over the long duration.  相似文献   

2.
Hemodynamic simulation in a novel design for femoral bypass grafts   总被引:1,自引:0,他引:1  
Qiao A  Matsuzawa T 《Biorheology》2007,44(2):103-124
The effectiveness of femoral bypass grafts is correlated with the geometric configuration and hemodynamics of the bypass and the arteries. As an attempt to develop a new design for femoral bypass grafts, we present a novel geometric configuration for a symmetrically implanted 2-way bypass graft. In order to investigate how the symmetric 2-way bypass grafts affect the flow patterns through the anastomosis, physiologic blood flows in 1-way and 2-way models for a fully stenosed femoral bypass were simulated with the finite element method, and the hemodynamic factors in these models were studied. The temporal and spatial distributions of flow patterns and wall shear stresses in the vicinity of distal anastomosis during the cardiac cycle were analyzed. The results computed showed that the 2-way model has more preferable hemodynamics than the 1-way model in the distribution of flow patterns and wall shear stresses, and it may improve the flow conditions and decrease the probability of restenosis. However, the limitations of the 2-way bypass model may counteract the positive effects. More detailed hemodynamic studies are necessary to fully assess the viability of the 2-way bypass graft.  相似文献   

3.
目的血管搭桥术后的内膜增生往往导致手术失败,而内膜增生与搭桥血管内的流场密切相关,为改善搭桥血管中的流场结构,作者设计了偏心搭桥手术方法,利用计算机数值模拟技术,探索偏心搭桥和传统搭桥血管中流场的变化,为血管搭桥方法提供优化设计方案。方法16只犬随机分为偏心搭桥组和传统搭桥组进行血管搭桥,测定搭桥前后血管几何数据,搭桥后近心端及远心端吻合口血流量和血压。按测定的血管几何数据,FLUENT 6.2模拟搭桥血管内的流场。结果偏心搭桥近心端和远心端吻合口不在同一平面。传统搭桥中,主体动脉远心端吻合口对应面处存在一个较低壁面剪切应力(WSS)区域及流体停滞点,离脚跟较近的一部分流体会形成涡漩,血流进入主体动脉后,还会表现出迪恩涡二次流;偏心搭桥中,主体动脉吻合口对应面上的低WSS区域和流体停滞点消失,血流接触到吻合口底面后,以切向旋转的方式改变其流动方向,不会形成涡漩,且当血流进入主体动脉后,立即发生螺旋流态且能持续很长一段。结论偏心搭桥能够产生血液旋动流,显著增加远心端血流量、提高WSS。  相似文献   

4.
This article is the second in a series which presents a computer model of the left coronary arteries. The first article discussed the geometry, the governing equations, and the numerical method employed. This paper details an acute canine experiment used to validate the approach as well as the systematic investigation of several important parameters governing the left coronary circulation. These parameters include peripheral resistance, wall properties, and altered geometric properties through various stenosis/bypass configurations. With appropriate selection of parameters, the model reproduces an in vivo waveform very closely. The model also predicts many clinical phenomena, such as the "critical" value of stenosis, the dramatic reduction in flow through a stenosis when bypassed, and the restorative effect of the bypass upon flow to the distal bed. The model also is used to show that the autonomic state of the animal profoundly affects the influence of various factors, e.g., the critical value of a stenosis is much higher under resting conditions than under hyperemic conditions.  相似文献   

5.
Fan Y  Xu Z  Jiang W  Deng X  Wang K  Sun A 《Journal of biomechanics》2008,41(11):2498-2505
The development of distal end-to-side anastomotic intimal hyperplasia (IH) has been attributed to the flow disturbance and abnormal wall shear stress (WSS) distribution there. The geometry of the bypass has a strong influence on the flow pattern and WSS distribution. Using a canine model of end-to-side anastomosis, a 45 degrees S-type bypass was compared with 60 degrees , 45 degrees and 30 degrees conventional bypasses in the term of IH along the host artery floor. Numerical blood flow simulations were also carried out to characterize the flow patterns at the distal parts of the bypassed arteries for the 4 models. The results showed that the averaged intima thicknesses of the host artery floors for the 4 bypass models were 119.50+/-10.30 microm (60 degrees ), 65.56+/-6.53 microm (45 degrees ), 45.26+/-5.99 microm (30 degrees ) and 47.64+/-4.85 microm (S-type), respectively, vs. 9.81+/-1.88 microm in the control group (without bypass surgery). Compared with the control group, neointima thickness in all 4 bypass models was significantly increased, but the neointima thickness of the 45 degrees S-type bypass was apparently much better than its 45 degrees conventional counterpart, and was as good as the 30 degrees conventional bypass. The numerical simulation revealed an apparent swirling flow pattern in the S-type bypass, which was very different than the flow patterns in the 3 conventional bypass models. This swirling flow altered the overall flow pattern in the distal part of the bypassed artery and eliminated the low WSS zone along the host artery floor. The improvement in the term of IH for the S-type bypass is most likely due to the alteration of the overall flow pattern and WSS distribution by the geometrical configuration of the S-type bypass.  相似文献   

6.
The development of intimal hyperplasia at arterial bypass graft anastomoses is a major factor responsible for graft failure. A revised surgical technique, involving the incorporation of a small section of vein (vein cuff) into the distal anastomosis of PTFE grafts, results in an altered distribution of intimal hyperplasia and improved graft patency rates, especially for below-knee grafts. Numerical simulations have been conducted under physiological conditions to identify the flow behaviour in a typical cuffed bypass model and to determine whether the improved performance of the cuffed system can be accounted for by haemodynamic factors. The flow patterns at the cuffed anastomosis are significantly different to those at the conventional end-to-side anastomosis. In the former case, the flow is characterised by an expansive, low momentum recirculation within the cuff. Separation occurs at the graft heel, and at the cuff toe as the blood enters the recipient artery. Wall shear stresses in the vicinity of the cuff heel are low, but high shear stresses and large spatial gradients in the shearing force act on the artery floor during systole. In contrast, a less disturbed flow prevails and the floor shear stress distribution is less adverse in the conventional model. In conclusion, aspects of the anastomotic haemodynamics are worsened when the cuff is employed. The benefits associated with the cuffed grafts may be related primarily to the presence of venous material at the anastomosis. Therefore, caution is advised with regard to the use of PTFE grafts, pre-shaped to resemble a cuffed geometry.  相似文献   

7.
The Coronary Artery Bypass Graft (CABG) yields excellent results and remains the modern standard of care for treatment of occlusive disease in the cardiovascular system. However, the development of anastomotic Intimal Hyperplasia (IH) and restenosis can compromise the medium-and-long term effects of the CABG. This problem can be correlated with the geometric configuration and hemodynamics of the bypass graft. A novel geometric configuration was proposed for the CABG with two symmetrically implanted grafts for the purpose of improving the hemodynamics. Physiological blood flows in two models of bypass grafts were simulated using numerical methods. One model was for the conventional bypass configuration with a single graft (1-way model); the other model was for the proposed bypass configuration with two grafts (2-way model). The temporal and spatial distributions of hemodynamics, such as flow patterns and Wall Shear Stress (WSS) in the vicinity of the distal anastomoses, were analyzed and compared. Calculation results showed that the 2-way model possessed favorable hemodynamics with uniform longitudinal flow patterns and WSS distributions, which could decrease the probability of restenosis and improve the effect of the surgical treatment. Concerning the limitations of the 2-way bypass grafts, it is necessary to perform animal experiments to verify the viability of this novel idea for the CABG.  相似文献   

8.
This paper considers a finite element method to characterize blood flow in the human arm arteries. A set of different pressure waveforms, which represent normal and diseased heart pulses, is used for the proximal boundary conditions, and a modified Windkessel model is used for the distal arterial boundary conditions. A comparison of the distal pressure and flow waveforms, for each different proximal pressure, is made to determine whether such waveforms are significantly altered from normal waveforms. The results show that the distal pressure and/or flow waveforms in certain cases are sufficiently different to be possibly used as a diagnostic indicator of an abnormal heart condition. Also considered is the effect of stenosis, change of compliance, and dilatation of the distal beds on the pressure and flow waveforms. A stenosis which has an area reduction of greater than approximately 75% is found to significantly alter both the distal pressure and flow waveforms. Changes in arterial compliance, however, do not strongly influence the waveforms. Dilatation of distal vascular beds is simulated by reducing the lumped resistance of these beds, and this reduction increases mean flow and decreases mean distal pressure, but has little effect on the basic shape of either the pressure or flow waveform.  相似文献   

9.
The formation of distal anastomotic intimal hyperplasia (IH), one common mode of bypass graft failure, has been shown to occur in the areas of disturbed flow particular to this site. The nature of theflow in the segment of artery proximal to the distal anastomosis varies from case to case depending on the clinical situation presented. A partial stenosis of a bypassed arterial segment may allow residual prograde flow through the proximal artery entering the distal anastomosis of the graft. A complete stenosis may allow for zero flow in the proximal artery segment or retrograde flow due to the presence of small collateral vessels upstream. Although a number of investigations on the hemodynamics at the distal anastomosis of an end-to-side bypass graft have been conducted, there has not been a uniform treatment of the proximal artery flow condition. As a result, direct comparison of results from study to study may not be appropriate. The purpose of this work was to perform a three-dimensional computational investigation to study the effect of the proximal artery flow condition (i.e., prograde, zero, and retrograde flow) on the hemodynamics at the distal end-to-side anastomosis. We used the finite volume method to solve the full Navier-Stokes equations for steady flow through an idealized geometry of the distal anastomosis. We calculated the flow field and local wall shear stress (WSS) and WSS gradient (WSSG) everywhere in the domain. We also calculated the severity parameter (SP), a quantification of hemodynamic variation, at the anastomosis. Our model showed a marked difference in both the magnitude and spatial distribution of WSS and WSSG. For example, the maximum WSS magnitude on the floor of the artery proximal to the anastomosis for the prograde and zero flow cases is 1.8 and 3.9 dynes/cm2, respectively, while it is increased to 10.3 dynes/cm2 in the retrograde flow case. Similarly, the maximum value of WSSG magnitude on thefloor of the artery proximal to the anastomosis for the prograde flow case is 4.9 dynes/cm3, while it is increased to 13.6 and 24.2 dynes/cm3, respectively, in the zero and retrograde flow cases. The value of SP is highest for the retrograde flow case (13.7 dynes/cm3) and 8.1 and 12.1 percent lower than this for the prograde (12.6 dynes/cm3) and zero (12.0 dynes/cm3) flow cases, respectively. Our model results suggest that the flow condition in the proximal artery is an important determinant of the hemodynamics at the distal anastomosis of end-to-side vascular bypass grafts. Because hemodynamic forces affect the response of vascular endothelial cells, the flow situation in the proximal artery may affect IH formation and, therefore, long-term graft patency. Since surgeons have some control over the flow condition in the proximal artery, results from this study could help determine which flow condition is clinically optimal.  相似文献   

10.
The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.  相似文献   

11.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

12.
T Matsuo  R Okeda  F Higashino 《Biorheology》1989,26(4):799-811
A study was conducted to investigate the hydrodynamics of branching flow in relation to the blood supply to the basal part of the brain. A series of measurements of the branching loss-coefficients under laminar steady flow were conducted using model branches with various geometries, and the effect of branching on blood supply to distal areas was described using a lumped-parameter model of the vascular structure. It was revealed that in the blood circulation, branching loss is important where a small artery divides off with a large branching angle from a large trunk. It was also indicated that the effect of such branching on the distal blood supply might become more significant when the peripheral resistance is reduced, thereby increasing the blood velocity in the trunk.  相似文献   

13.
In the context of patient-specific cardiovascular applications, hemodynamics models (going from 3D to 0D) are often limited to a part of the arterial tree. This restriction implies the set up of artificial interfaces with the remaining parts of the cardiovascular system. In particular, the inlet boundary condition is crucial: it supplies the impulsion to the system and receives the reflected backward waves created by the distal network. Some aspects of this boundary condition need to be properly defined such as the treatment of backward waves (reflected or absorbed) and the value of the imposed hemodynamic wave (total or forward component). Most authors prescribe as inlet boundary condition (BC) the total measured variable (pressure, velocity or flow rate) in a reflective way. We show that with this type of inlet boundary condition, the model does not produce physiological waveforms. We suggest instead to prescribe only the forward component of the prescribed variable in an absorbing way. In this way, the computed reflected waves superpose with the prescribed forward waves to produce the total wave at the inlet. In this work, different inlet boundary conditions are implemented and compared for a 1D blood flow model. We test our boundary conditions on a truncated arterial model presented in the literature as well as on a patient-specific lower-limb model of a femoral bypass. We show that with this new boundary condition, a much better fitting is observed on the shape and intensity of the simulated pressure and velocity waves.  相似文献   

14.
Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model approximates the blood viscosity and WSS calculations in a more satisfactory way than the other non-Newtonian models at low shear rates, a cautious approach is given in the use of this blood viscosity model. Finally, some preliminary transient results are presented.  相似文献   

15.
The classic single-phase Newtonian blood flow model ignores the motion of red blood cells (RBCs) and their interaction with plasma. To address these issues, we adopted a multiphase non-Newtonian model to carry out a comparative study between a helical artery bypass graft (ABG) and a conventional ABG in which the blood flow is composed of plasma and RBCs. The investigation focused on the mechanism of RBC buildup in an ABG but the haemodynamic parameters obtained by single-phase and multiphase models were also compared. The aggregation of RBCs along the inside wall of a conventional ABG and at the heel of its distal anastomosis was predicted while a poor aggregation was observed along the helical ABG. In addition, RBCs were observed to gradually sediment along the gravity direction. However, the computed haemodynamic parameters by multiphase model qualitatively agreed well with those by single-phase model. It was concluded that (1) the single-phase computational fluid dynamics (CFD) is reasonable to do the computation of haemodynamic parameters in ABGs; (2) secondary flow does not definitely produce buildup of RBCs in the inside curvature, its configuration played an important role in the movement of RBCs and the dominating one-way rotating flow in a helical ABG guaranteed no buildup of RBCs on its inside wall and (3) gravity direction is important for the movement of RBCs which may help to explain why doing exercise is good for human health. This study helps to shed light on the migration of RBCs in ABGs, which cannot be explored by single-phase CFD models, and provides more understanding of the underlying flow mechanism for ABG failure.  相似文献   

16.
Outflow distribution at the distal anastomosis of infrainguinal bypass grafts remains unquantified in vivo, but is likely to influence flow patterns and haemodynamics, thereby impacting upon graft patency. This study measured the ratio of distal to proximal outflow in 30 patients undergoing infrainguinal bypass for lower limb ischaemia, using a flow probe and a transit-time ultrasonic flow meter. The mean outflow distribution was approximately 75% distal to 25% proximal, with above knee anastomoses having a greater proportion of distal flow (84%) compared to below knee grafts (73%). These in vivo flow characteristics differ significantly from those used in theoretical models studying flow phenomena (50:50 and/or 100:0), and should be incorporated into future research.  相似文献   

17.
The development and progress of distal anastomotic intimal hyperplasia seems to be promoted by altered flow conditions and intramural stress distributions at the region of the artery-graft junction of vascular bypass configurations. From clinical observations, it is known that intimal hyperplasia preferentially occurs at outflow anastomoses of prosthetic bypass grafts. In order to gain a deeper insight into post-operative disease processes, and subsequently, to contribute to the development of improved vascular reconstructions with respect to long term patency rates, detailed studies are required. In context with in vivo experiments, this study was designed to analyze the flow dynamics and wall mechanics in anatomically correct bypass configurations related to two different surgical techniques and resulting geometries (conventional geometry and Miller-cuff). The influence of geometric conditions and of different compliance of synthetic graft, the host artery and the interposed venous cuff on the hemodynamic behavior and on the wall stresses are investigated. The flow studies apply the time-dependent, three-dimensional Navier-Stokes equations describing the motion of an incompressible Newtonian fluid. The vessel walls are described by a geometrically non-linear shell structure. In an iterative coupling procedure, the two problems are solved by means of the finite element method. The numerical results demonstrate non-physiological flow patterns in the anastomotic region. Strongly skewed axial velocity profiles and high secondary velocities occur downstream the artery-graft junction. On the artery floor opposite the junction, flow separation and zones of recirculation are found. The wall mechanical studies show that increased compliance mismatch leads to increased intramural stresses, and thus, may have a proliferative influence on suture line hyperplasia, as it is observed in the in vivo study.  相似文献   

18.
Vortex shedding at vascular anastomoses were investigated in vitro using a 20 MHz pulsed-wave Doppler velocimeter. Centreline velocity measurements were made at various axial distances in simplified polyurethane models of proximal and distal end-to-side anastomoses of angles 15, 30, 45, 60 and 80 degrees using pulsatile flow waveforms similar to those in femoropopliteal bypass grafts. The in-phase and quadrature Doppler signals were recorded and the maximum frequency waveform, averaged over 64 cycles, was obtained using short-time Fourier transform. A fourth-order Butterworth low-pass filter was employed to separate the vortex velocity signal from the convective velocity. The vortex signal envelope was calculated using a Hilbert transform method and the vortex amplitude was taken as the maximum of this envelope. The results show that higher vortex amplitude were found in the proximal anastomoses and under resting flow conditions. Although the vortex amplitudes generally increased with angles of anastomosis, they were found to be higher in the 60 degrees than in the 80 degrees proximal anastomosis. The vortex structures were investigated using spectrograms and these show prominent features at 40-50 Hz indicative of the short-duration oscillatory signals during the decelerative phase of systole expected from the passage of vortices. The study indicates that flow disturbances due to vortex shedding may be a common feature in femoropopliteal bypass grafts.  相似文献   

19.
We report methods for (a) transforming a three-dimensional geometry acquired by magnetic resonance angiography (MRA) in vivo, or by imaging a model cast, into a computational surface representation, (b) use of this to construct a three dimensional numerical grid for computational fluid dynamic (CFD) studies, and (c) use of the surface representation to produce a stereo-lithographic replica of the real detailed geometry, at a scale convenient for detailed magnetic resonance imaging (MRI) flow studies. This is applied to assess the local flow field in realistic geometry arterial bypass grafts. Results from a parallel numerical simulation and MRI measurement of flow in an aorto-coronary bypass graft with various inlet flow conditions demonstrate the strong influence of the graft inlet waveform on the perianastomotic flow field. A sinusoidal and a multi harmonic coronary flow waveform both with a mean Reynolds number (Re) of 100 and a Womersley parameter of 2.7 were applied at the graft inlet. A weak axial flow separation region just distal to the toe was found in sinusoidal flow near end deceleration (Re = 25). At the same location and approximately the same point in the cycle (Re = 30) but in coronary flow, the axial flow separation was stronger and more spatially pronounced. No axial flow separation occurred in steady flow for Re = 100. Numerical predictions indicate a region in the vicinity of the suture line (where there is a local narrowing of the graft) with a wall shear magnitude in excess of five times that associated with fully developed flow at the graft inlet.  相似文献   

20.
To assess the presence and magnitude of the effect of skin blood flow on finger skin cooling on contact with cold objects against the background of circulatory disorder risks in occupational exposures, this study investigates the effect of zero vs. close-to-maximal hand blood flow on short-term (< or =180 s) skin contact cooling response at a contact pressure that allows capillary perfusion of the distal pulp of the fingertip. Six male volunteers touched a block of aluminium with a finger contact force of 0.5 N at a temperature of -2 degrees C under a vasodilated and an occluded condition. Before both conditions, participants were required to exercise in a hot room for > or = 30 min for cutaneous vasodilation to occur (increase in rectal temperature of 1 degrees C). Under the vasodilated condition, forearm blood flow rate rose as high as 16.8 ml.100 ml(-1).min(-1). Under the occluded condition, the arm was exsanguinated, after which a blood pressure cuff was secured on the wrist inducing arterial occlusion. Contact temperature of the finger pad during the subsequent cold contact exposure was measured. No significant difference was found between the starting skin temperatures for the two blood flow conditions, but a distinct difference in shape of the contact cooling curve was apparent between the two blood flow conditions, with Newtonian cooling observed under the occluded condition, whereas a rewarming of the finger skin toward the end of the exposure occurred for the vasodilated condition. Blood flow was found to significantly increase contact temperature from 40 s onward (P < 0.01). It is concluded that, at a finger contact force compatible with capillary perfusion of the finger pad ( approximately 0.5 N), circulating blood provides a heat input source that significantly affects finger skin contact cooling during a vasodilated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号