首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop borders reduce potato virus Y incidence in seed potato   总被引:1,自引:0,他引:1  
Crop borders of soybean (Glycine max), sorghum (Sorghum bicolor), winter wheat (Triticum aestivum) and potato (Solanum tuberosum) were tested as a means of reducing potato virus Y (PVY) incidence in seed potato. Borders of fallow cultivated ground served as controls. Aphid landing rates were monitored weekly in plots using green tile traps, and PVY incidence was assessed by serologically testing tuber progeny from selected rows in each plot. Average weekly aphid landing rates in fallow-bordered and crop-bordered plots were not significantly different in 1992 (29.4 and 25.2 aphids, respectively) or 1993 (7.3 and 6.6 aphids, respectively). However, crop borders significantly reduced PVY incidence. In 1992, fallow-bordered and soybean-bordered plots averaged 47.8% and 35.0% PVY infection, respectively. In 1993, PVY infection averaged across all crop (soybean, sorghum, and wheat) bordered plots was 2.7% compared to 6.8% in fallow-bordered plots. PVY incidence in the centre rows of fallow-bordered and crop-bordered plots was statistically equivalent, while outer rows of crop-bordered plots had significantly less PVY than outer rows of fallow-bordered plots. Crop borders apparently reduced the number of viruliferous aphids landing on the edge of the plot. The choice of crop species used as a border, or treating the border with a systemic insecticide, did not affect aphid landing rates or PVY incidence. In 1995, PVY incidence in the centre 10 row block of potatoes averaged 2.1% across all crop borders (potato and soybean). PVY infection in the four row potato border averaged 5.7%. Crop borders are readily adaptable to current production practices, although the greatest benefits in reducing PVY incidence would occur in average sized, generation 0 (< 0.2 ha), elite seed potato fields.  相似文献   

2.
Lettuce mosaic virus (LMV) is transmitted by aphid vectors in a nonpersistent manner as well as by seeds. The virus causes severe disease outbreaks in commercial lettuce crops in several regions of Spain. The temporal and spatial patterns of spread of LMV were studied in autumn 2002 in the central region of Spain. Symptomatic lettuce (var. Cazorla) plant samples were collected weekly, first at the seedling stage from the greenhouse nursery and later outdoors after transplantation. The exact position of symptomatic plants sampled in the field was recorded and then material was tested by enzyme‐linked immunosorbent assay to assess virus infection. Cumulative spatial data for infected plants at different growth stages were analysed using spatial analysis by distance indices. For temporal analysis, the monomolecular, Gompertz, logistic and exponential models were evaluated for goodness of fit to the entire set of disease progress data obtained. The results indicated that the disease progress curve of LMV epidemics in the selected area is best described by a Gompertz model and that the epidemic follows a polycyclic disease progression. Our data suggest that secondary cycle of spread occurs when noncolonising aphid species land on the primary infected plants (probably coming from infected seed) and move to adjacent plants before leaving the crop. The role of weeds growing close to lettuce fields as potential inoculum sources of virus and the aphid species most likely involved in the transmission of LMV were also identified.  相似文献   

3.
Potato virus Y (PVY, genus Potyvirus, family Potyviridae) is transmitted non‐persistently by aphids. It causes major losses in potato production (Solanum tuberosum), especially following seed tuber‐borne infection of plants. To limit the risk of PVY infection, seed potato production is located preferably in regions where vector pressure is low. The northern‐most high‐grade seed potato production area (HG zone) of Europe is in Finland. The aim of this study was to determine the incidence of aphid species with documented ability to transmit PVY and to use a modelling approach to determine their relative importance as vectors of PVY in the HG zone of Finland. Winged aphids were caught from six to seven potato fields in each of three growing seasons (2007–09) using yellow pan traps that were examined twice a week. Identification of more than 30 000 individuals indicated that 37% of the aphids belonged to nine species reported to transmit PVY. Incidence of PVY in seed lots was low (0–5.6%) and the seasonal increase of PVY incidence was also low in the potato crops. No potato‐colonising aphids were found on the plants in any of the years. The seasonal increase in PVY incidence was modelled using aphid counts in traps, the relative vector efficiencies of the aphids, virus resistance of cultivars, and the initial infection rate of the seed tubers as explanatory variables in generalised linear mixed modelling. Akaike's information criterion was employed to find the best set of explanatory variables for PVY in harvested tubers. Results of this modelling approach showed that the incidence of seed‐borne PVY infection and the early‐season vector flights are the most important factors contributing to the incidence of PVY in the yield. Compared to models with data from all potential vector species, models containing data from Aphis fabae only showed a better model fit with regard to the incidence of PVY in the harvested tubers. The explanatory power of the models was lost when A. fabae was omitted from the vector data, suggesting that other species play a negligible role as vectors of PVY in the HG zone of Finland. Results can be used to devise appropriate strategies for enhanced control of PVY.  相似文献   

4.
The accumulation of potato virus Y?(PVY?) and potato leaf roll virus (PLRV) was studied in plants of Solanum brevidens co-infected with each of six viruses or a viroid. Virus could not be detected by ELISA in plants of S. brevidens infected solely with PVY. However, accumulation of PVY was increased c. 1000-fold in plants doubly infected with tobacco mosaic virus or potato spindle tuber viroid (PSTVd). PVY titres in doubly infected plants of S. brevidens were between 1% and 0.1% of those found in the PVY-susceptible interspecific Solanum hybrid DTO-33. Double infections of 5. brevidens by PVY and alfalfa mosaic virus or potato viruses M, S, T or X did not significantly enhance PVY accumulation. Accumulation of PLRV was not enhanced in plants co-infected with any of the six viruses or PSTVd.  相似文献   

5.
Potato virus Y reduction by straw mulch in organic potatoes   总被引:1,自引:0,他引:1  
Potato virus Y (PVY) is transmitted non-persistently by winged morphs of many aphid species and is a major problem in seed potato production. In order to evaluate the potential of straw mulch applications (4–5 t ha−1) and presprouting on PVY reduction, small scale organically managed field experiments were carried out in Northern Hessen, Germany, over 3 yr. In all years mulching significantly reduced aphid infestation on leaves as well as PVY incidence in tubers. For the effect of presprouting the temporal coincidence of two factors was crucial – crop emergence and aphid flight activity. Presprouting decreased PVY incidence when in the phase of early crop emergence aphid spring flight activity was low, but increased it, although not significantly, when prominent aphid flight peaks occurred in this critical period. Straw mulch was most effective when vector pressure was concentrated early in the year acting as a PVY protectant for young plants. In later growth stages its effect declined gradually with increasing ground coverage of the crop. Combined mulching and presprouting had a synergistic, complementary effect on reduction of PVY incidence. In an on-farm experiment in 2001 scaling up the area mulched stepwise from 100 m2 to 900 m2 consistently kept aphid infestation at reduced levels.  相似文献   

6.
The influence of viral disease symptoms on the behaviour of virus vectors has implications for disease epidemiology. Here we show that previously reported preferential colonization of potatoes infected by potato leafroll virus (genus Polerovirus) (luteovirus) (PLRV) by alatae of Myzus persicae, the principal aphid vector of PLRV, is influenced by volatile emissions from PLRV-infected plants. First, in our bioassays both differential immigration and emigration were involved in preferential colonization by aphids of PLRV-infected plants. Second, M. persicae apterae aggregated preferentially, on screening above leaflets of PLRV-infected potatoes as compared with leaflets from uninfected plants, or from plants infected with potato virus X (PVX) or potato virus Y (PVY). Third, the aphids aggregated preferentially on screening over leaflet models treated with volatiles collected from PLRV-infected plants as compared with those collected from uninfected plants. The specific cues eliciting the aphid responses were not determined, but differences between headspace volatiles of infected and uninfected plants suggest possible ones.  相似文献   

7.
We compiled data from the Swiss seed certification programme for the country‐wide incidence of viruses in seed potato crops for the years 1989–2012. Model selection techniques were used to regress year‐to‐year variation in the incidence of potato viruses – largely dominated by Potato virus Y (PVY) – in three susceptible varieties against the abundance of virus vectors (winged aphids), obtained in a suction trap, to identify the most important vector species. The ultimate aim of this study was to develop a decision‐support system capable of forecasting virus spread during the current season using trap data of aphid flights. The average virus incidence in the varieties Bintje, Sirtema and Charlotte varied considerably among years, ranging from 1.0% in 2009 to 13.6% in 1989 (N = 150–611 seed lots per year). A linear regression model including the cumulative sums (until mid‐June) of two aphid species (Brachycaudus helichrysi and Phorodon humuli) as predictor variables for virus disease was remarkably well supported by the data (R2 = 0.86). Similarly, using counts of B. helichrysi alone resulted in a good model fit (R2 = 0.81). Cross‐validation revealed high predictive accuracy of the model. Although prediction root mean squared errors (RMSE) calculated for different timings of forecasts were high for extremely early forecasts, they rapidly declined for forecasts conducted by the end of May (i.e. 2–4 weeks after potato emergence). Winter temperature (January–February) was positively correlated with the abundance of B. helichrysi in early summer as well as with post‐harvest virus incidence. Remarkably, the abundance of Myzus persicae, often considered the main vector of PVY, was not correlated with virus incidence. Taken together, our analysis suggests that the early migrating aphid B. helichrysi, rather than M. persicae, is the main vector of PVY in Switzerland, and that suction trap data are useful for the design of decision‐support systems aimed to optimise virus control in seed potato production.  相似文献   

8.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

9.
Three British strains of potato aucuba mosaic virus (PAMV) were tested for transmissibility by the aphid Myzus persicae. None was aphid transmissible on its own but all three were transmitted in the nonpersistent manner by aphids that had previously been fed on a source of the potyvirus potato virus Y (PVY). Different PVY strains mediated PAMV transmission from Nicotiana clevelandii to Capsicum annuum to different degrees, and different PAMV strains were transmitted at different frequencies when assisted by the same PVY strain. These results are compatible with the idea that subtle differences in the PAMV coat protein and in the PVY helper component are responsible for diffrences in frequencies of transmission of PAMV, without however, excluding the possibility of effects of other undefined factors. Transmission of PAMV was no less frequent when mediated by a PVY strain that was unable to infect C. annuum than when a C. annuum‐infecting PVY strain was used.  相似文献   

10.
Surveys were made for the presence of potato virus Y (PVY) in the planted seed and harvested tubers in ware potato crops of cv. Record grown at three sites in England in 1994 (survey 1) and seven sites in 1995 (survey 2). PVY was not found in samples of planted seed, but high levels of infection were found in many, but not all, harvested crops. However, plants of volunteer potatoes (VP) (i.e. plants arising from tubers or true seed derived from previous crops and surviving in the soil) were frequently found to be infected. Infection in tubers harvested from crops in the first survey ranged from 2–52%. In 1995, VP were collected from two of the three English sites where potato crops had been grown the previous season and also from a site in Scotland where PVY infection in an experimental crop of cv. Record had been monitored in 1994. The percentages of infected VP ranged from 2–54%. PVYN was the predominant strain found in sampled VP, with only two plants (out of 300 infected) containing PVYO. In the second survey, VP were assessed within the 1995 ware crops and were found at four sites, at which they comprised between 4–8% of emerged potato plants. Between 31–93% of VP were infected. Again, PVYN was the predominant strain with one plant containing PVYO and another PVYC (out of 189 infected). A sample of harvested tubers from each site was also tested for PVY. At those sites which had many infected VP, the harvested crop contained a large percentage of infected tubers, ranging from 60–97%. Two sites which had not previously been used for cropping potatoes had no VP and a very low incidence of PVY infection in the harvested tubers (1% and 2%). However, although no VP were found at one site, 31% of harvested tubers were infected, suggesting that alternative inoculum sources may be important.  相似文献   

11.
Mixed viral infections of heterologous viruses such as Potato virus Y (family Potyviridae, genus Potyvirus, PVY) and Potato leafroll virus (family Luteoviridae, genus Polerovirus, PLRV) are a regular occurrence in Idaho's potato, Solanum tuberosum (L.), cropping systems. An increased number of plant samples from Idaho's potato fields over the past 2 yr has serologically tested positive for both PVY and PLRV via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and exhibited more severe symptoms than singly-infected plants (PVY or PLRV). Several studies have extensively examined the mixed infection phenomenon but to the best of our knowledge, none have examined the effect of such infections on vector biology and preference. Laboratory studies were conducted to examine the effect of mixed viral (PVY-PLRV) infection on the fecundity and preference of two of the most efficient PVY and PLRV vectors, the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). M. persicae and M. euphorbiae adults were clip-caged (one adult per cage) to leaflets of PVY, PLRV, PVY-PLRV-infected, and noninfected potato plants. The number of nymphs produced in all four treatments was recorded after 96 h. M. persicae and M. euphorbiae fecundity was significantly higher on mixed infected plants than on singly infected plants or noninfected plants. Preference of alatae and apterae of M. persicae and M. euphorbiae was determined with the use of settling bioassays. Both alatae and apterae of M. persicae and M. euphorbiae preferentially settled on PVY-PLRV-infected plants than on singly infected plants (PVY or PLRV) or noninfected plants.  相似文献   

12.
Although Solanum brevidens could be infected with potato virus X (PVX), potato virus Y0 (PVY0) and PVYN, no symptoms of infection were apparent and tests by double antibody sandwich ELISA, electron microscopy and sap transmission to local lesion test plants indicated that the titres of PVX were less than a tenth of those of PVY0 and PVYN were less than a hundredth of those in infected plants of PDH40, a susceptible dihaploid clone of S. tuberosum cv. Pentland Crown. Furthermore, PVY0- and PVYN- infected leaves of S. brevidens were a poor source of inoculum in aphid transmission tests. The possibility of a common mechanism and genetic basis of resistance to PVY, PVX and potato leaf roll virus in S. brevidens is discussed.  相似文献   

13.
In three field experiments in 1985 and 1986, we studied the effect of the date of primary infection on the spread of beet yellows closterovirus (BYV) and beet mild yellowing luteovirus (BMW) from artificially inoculated sugar beet plants. Laboratory-reared vector aphids, Myzus persicae, were placed on these sources of virus. There was no substantial natural immigration of vectors or viruses. In two experiments, one with BMYV in 1985 and the other in BYV in 1986, populations of vector aphids remained low and there was little virus spread, i.e. c. 50 infected plants from one primarily infected source. The cause of this small amount of spread was the low number of vector aphids. In the third experiment, with BYV in 1986, large populations of M. persicae developed and there was substantial virus spread: c. 2000 infected plants in the plots which were inoculated before canopy closure. In later-inoculated plots in the same experiment, there was much less spread: c. 100 infected plants per virus source plant. Differences between fields in predator impact are implicated as the most probable factor causing differences in vector establishment and virus spread between these three experiments. Virus spread decreased with later inoculation in all three experiments. A mathematical model of virus spread incorporating results from our work has been used to calculate how the initial proportion of infected plants in a crop affects the final virus incidence. This model takes into account the effect of predation on the development of the aphid populations. The processes underlying the spread and its timing are discussed.  相似文献   

14.
The temporal progress and spatial distribution of papaya ringspot virus (PRV) and populations of aphid vectors were monitored in two papaya (Carica papaya) plantations in the state of Veracruz, México. The incidence of PRV had a typical sigmoidal curve and the logistic model was more acceptable for describing the disease progress than the Gompertz model. The rate (rL of increase in disease incidence (0.034 and 0.023/unit/day in Plot A and B, respectively) differed (P = 0.05) between the plots; differences in number of aphids trapped could account for the difference. The initial determination of an apparent regular spatial pattern early in the epidemic, obtained with a quadrat size determined by Greig-Smith's method (n = 8 plants/quadrat) at 50 % disease incidence, was inconsistent with our biological observations in the field. An arbitrarily selected, square quadrat size (n = 9 plants/quadrat), was more consistent with visual observation for describing the spatial pattern in the field. With 9 plants/quadrat a random pattern was found. Aphid populations had a bimodal distribution at both sites with the highest population peak in December–February and a secondary peak in August–September and change in disease incidence was generally related to the aphid population level in the previous month. None of the five potential aphid vectors (Myzus persicae, Aphis gossypii A. nerii, A. citricola and Macrosiphon euphorbiae) of PRV in Mexico colonized the papaya plants, however, which may explain the absence of clustering of disease.  相似文献   

15.
The occurrence and distribution of tobacco rattle virus (TRV) in field plots was determined by soil bait-testing and disease incidence in tulips subsequently grown on these plots was studied. The virus occurred in patches, calculated as 1.5 m × 3.6 m. The presence of virus was not correlated with numbers of potential vector trichodorid nematodes. Of three trichodorid nematode species present, only Paratrichodorus teres transmitted TRV which, as with virus isolates obtained in bait-tests and from infected tulips, reacted in serological tests with an antiserum prepared against a Dutch isolate of pea-early browning virus (PEBV). Virus prevalence in a subsequent tulip crop was 0.8% and in a sample of tulip plants, virus was recovered only from plants showing virus symptoms. Plots from which TRV was recovered in bait-tests yielded significantly more virus diseased tulips than plots which tested negative for virus. Growing bait-plants in field-plots, as compared with greenhouse tests using soil collected as a series of sub-samples, resulted in an underestimate of the occurrence of TRV.  相似文献   

16.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

17.
Aphids that colonize and reproduce on potato are some of the most efficient vectors of Potato virus Y (PVY) (Potyviridae: Potyvirus), and hence these aphids have been the focus of the majority of studies to date. However, other non‐colonizing aphids can also function as vectors. Mineral oil is the only product available to growers that effectively prevents the spread of PVY in potato seed production. Most previous studies focused on the effect of mineral oil on the behavior of aphids on their preferential host plant, and consequently there is a lack of information for non‐colonizing aphids on potato plants. The objective of this study was to determine the effect of spraying potatoes with one of two mineral oils, Superior 70 or Vazyl‐Y, on host selection and probing behavior of the non‐colonizing aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae). The electrical penetration graph (EPG) technique, combined with ethological observations, determined that there was no difference in R. padi behavior on potato plants treated with Superior 70. However, there were few significant changes in R. padi behavior on plants sprayed with Vazyl‐Y, including a delay in the initiation of stylet penetration and an increase in the duration of xylem sap ingestion. These new data support previous results and confirm that the mode of action of mineral oil in the reduction of the spread of PVY is not solely due to the modification of the behavior of aphids.  相似文献   

18.
Stem canker (Rhizoctonia solani) of maincrop potatoes.   总被引:1,自引:0,他引:1  
In two years, potato plants were sampled at 1- or 2- weekly intervals from plots planted with seed tubers bearing sclerotia of Rhizoctonia solani (black scurf) and with seed without sclerotia either infested or not with cultures of R. solani at planting. Sprouted King Edward seed was used in 1981 and sprouted and non-sprouted King Edward and Pentland Crown seed in 1982. In both years 60–80% of shoots from seed with sclerotia and 90% of shoots from seed inoculated at planting were affected with stem canker. Most disease developed before shoots emerged although it gradually increased later when new shoots arising both from seed tubers or as branches on shoots with damaged apices (pruned shoots) became infected before they emerged. Sprouting seed tubers bearing sclerotia decreased the disease on both cultivars but with soil-applied inoculum the disease was more severe on plants from sprouted than non-sprouted seed. Some stolons were infected by R. solani soon after they developed and incidence of infection later increased. Thirty to 50% of stolons were infected on plants from infected seed tubers and 60% on plants with soil-applied inoculum. With both cultivars and sources of inoculum about 70% of the infected stolons had their apices killed (pruned).  相似文献   

19.
Potato leafroll virus (PLRV) causes one of the most serious aphid-transmitted diseases affecting yield and quality of potatoes, Solanum tuberosum (L.), grown in the United States. The green peach aphid, Myzus persicae (Sulzer), is considered to be by far the most efficient vector of this virus. Even the most strict aphid control strategy may not prevent the spread of PLRV unless measures also are taken to keep virus source plants within and outside the crop at a minimum. Hairy nightshade, Solanum sarrachoides (Sendtner), is one of the preferred weed hosts for green peach aphid. The potential of this weed as an aphid reservoir and virus source and its spread or perpetuation were investigated. With the use of double antibody sandwich enzyme-linked immunosorbent assay, it was confirmed that green peach aphid can transmit PLRV to hairy nightshade and that aphids can become viruliferous after feeding on infected hairy nightshade plants. Transmission from hairy nightshade to potato is 4 times the rate of potato to potato or potato to hairy nightshade. The green peach aphid preferred hairy nightshade over potato plants and reproduced at a higher rate on hairy nightshade than on potato. Therefore, a low level of PLRV-hairy nightshade infection could enhance the disease spread in the field.  相似文献   

20.
Sindelár L  Sindelárová M 《Planta》2002,215(5):862-869
Changes in glucose-6-phosphate dehydrogenase (G6P DH; EC 1.1.1.49) activity caused by infection of tobacco ( Nicotiana tabacum L.) leaves with potato virus Y (PVY), cucumber mosaic virus, potato virus X, tobacco rattle virus and turnip mosaic virus, the subcellular localisation of G6P DH isozymes in mesophyll protoplasts derived from healthy and PVY-infected tobacco leaves, as well as G6P DH control and the relationship of its isozymes with the degree of tobacco resistance to PVY multiplication, were studied. The activities of G6P DH were markedly increased in locally and systemically infected leaves and the time courses of the activity linearly correlated with those of virus multiplication. In leaves infected with PVY, the activity time courses of the crude and the partially purified G6P DH were coincident. This probably indicates the involvement of coarse regulation of the enzyme. PVY content linearly correlated with enhanced G6P DH activity in leaf discs derived from susceptible, tolerant and resistant cultivars of tobacco. The increased activity of the enzyme in infected protoplasts and plant tissues was predominantly caused by the increased activity of chloroplastic isozymes. This was confirmed by the specific staining of isozymes after electrophoretic separation of chloroplastic proteins of tobacco leaves. These findings enable the degree of resistance to virus multiplication to be quantified for the use of gene manipulation and breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号