首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502–527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.  相似文献   

2.
Ebola virus (EBOV) cellular attachment and entry is initiated by the envelope glycoprotein (GP) on the virion surface. Entry of this virus is pH dependent and associated with the cleavage of GP by proteases, including cathepsin L (CatL) and/or CatB, in the endosome or cell membrane. Here, we characterize the product of CatL cleavage of Zaire EBOV GP (ZEBOV-GP) and evaluate its relevance to entry. A stabilized recombinant form of the EBOV GP trimer was generated using a trimerization domain linked to a cleavable histidine tag. This trimer was purified to homogeneity and cleaved with CatL. Characterization of the trimeric product by N-terminal sequencing and mass spectrometry revealed three cleavage fragments, with masses of 23, 19, and 4 kDa. Structure-assisted modeling of the cathepsin L-cleaved ZEBOV-GP revealed that cleavage removes a glycosylated glycan cap and mucin-like domain (MUC domain) and exposes the conserved core residues implicated in receptor binding. The CatL-cleaved ZEBOV-GP intermediate bound with high affinity to a neutralizing antibody, KZ52, and also elicited neutralizing antibodies, supporting the notion that the processed intermediate is required for viral entry. Together, these data suggest that CatL cleavage of EBOV GP exposes its receptor-binding domain, thereby facilitating access to a putative cellular receptor in steps that lead to membrane fusion.Ebola virus (EBOV) is a member of the Filoviridae family and causes severe hemorrhagic fever in humans and nonhuman primates, with case fatality rates of up to 90%. Virus entry and attachment is mediated by a single envelope glycoprotein (GP) as a class I fusion protein, which is proteolytically processed during maturation into two subunits, GP1 and GP2. The GP1 N terminus contains a putative receptor-binding domain (RBD) (2, 9, 11, 12), and the GP2 C terminus contains a fusion peptide, two heptad-repeat regions, and a transmembrane domain. GP1 and GP2 are linked by a disulfide bond (Cys53-Cys609) and form trimers of heterodimers on the surface of virions. EBOV GP is also extensively glycosylated, especially within a region of GP1 termed the mucin-like domain (MUC domain), which contains multiple N- and O-linked glycans. We and others have previously shown the MUC domain of GP1 to be cytotoxic and to induce cell rounding (17, 21), and deletion of this region increases pseudovirus infectivity compared to that of full-length GP (11). The MUC domain, however, is also known to enhance cell binding through the human macrophage C-type lectin specific for galactose and N-acetylglucosamine (hMGL) (18), suggesting that glycans in this domain may be involved in the initial cellular attachment. Several other studies have identified factors that enhance cell binding and/or infectivity, including folate receptor α (4), β integrins (19), C-type lectins DC-SIGN and L-SIGN (1), and Tyro3 family members (16). However, the critical cellular receptor(s) thought to interact directly with the GP1 RBD have yet to be identified.Following virus uptake into host cells, which is presumed to occur via receptor-mediated endocytosis (13), the virion is transported to acidified endosomes where GP is exposed to a low pH and enzymatic processing. EBOV entry is pH dependent (19); however, unlike influenza virus, for which a low pH alone induces the conformational changes that lead to membrane fusion (20), recent studies indicate that proteolysis by endosomal cathepsin L (CatL) and CatB (active only at pH 5 to 6) is a dependent step for EBOV entry (5, 14). Although the intermediate EBOV GP generated by CatL cleavage is known to have increased binding and infectivity to target cells (7), little else is known about the cleavage product, specifically where the proteolytic sites are within GP and whether the cleaved product is immunogenic. Recently, Dube and colleagues have proposed a model for CatL cleavage based on thermolysin cleavage (6). However, thermolysin is nonphysiological in this setting and is a member of the metalloenzyme-protease family, whereas CatL is a member of the cysteine-protease family and essential for EBOV entry. In this study, we have characterized the physiological CatL cleavage of the Zaire EBOV GP (ZEBOV-GP) trimer and explored the effect of cleavage on the immunological properties of the GP trimer. To generate this intermediate, we expressed and purified a recombinant form of the Ebola GP trimer ectodomain that had been stabilized with a trimerization motif derived from T4 fibritin (foldon) and purified to homogeneity. The recombinant protein was cleaved with CatL, and the stable cleavage intermediate was characterized biochemically and immunologically. We identified several sites of CatL cleavage within the ZEBOV-GP ectodomain which are different than those observed with thermolysin. The cleaved intermediate product retained binding to the EBOV-neutralizing antibody KZ52 and elicited EBOV-neutralizing antibodies in vaccinated mice. Our data, in conjunction with the recently determined structure of the ZEBOV-GP ectodomain (10), shed light on the critical role of CatL processing in GP structure and function.  相似文献   

3.
Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d''Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29–36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.  相似文献   

4.
Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.  相似文献   

5.

Background

Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.

Methodology/Principal Findings

We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.

Conclusions/Significance

This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.  相似文献   

6.
Using chemical inhibitors and small interfering RNA (siRNA), we have confirmed roles for cathepsin B (CatB) and cathepsin L (CatL) in Ebola virus glycoprotein (GP)-mediated infection. Treatment of Ebola virus GP pseudovirions with CatB and CatL converts GP1 from a 130-kDa to a 19-kDa species. Virus with 19-kDa GP1 displays significantly enhanced infection and is largely resistant to the effects of the CatB inhibitor and siRNA, but it still requires a low-pH-dependent endosomal/lysosomal function. These and other results support a model in which CatB and CatL prime GP by generating a 19-kDa intermediate that can be acted upon by an as yet unidentified endosomal/lysosomal enzyme to trigger fusion.  相似文献   

7.
Ebolavirus (EBOV) entry into cells requires proteolytic disassembly of the viral glycoprotein, GP. This proteolytic processing, unusually extensive for an enveloped virus entry protein, is mediated by cysteine cathepsins, a family of endosomal/lysosomal proteases. Previous work has shown that cleavage of GP by cathepsin B (CatB) is specifically required to generate a critical entry intermediate. The functions of this intermediate are not well understood. We used a forward genetic strategy to investigate this CatB-dependent step. Specifically, we generated a replication-competent recombinant vesicular stomatitis virus bearing EBOV GP as its sole entry glycoprotein and used it to select viral mutants resistant to a CatB inhibitor. We obtained mutations at six amino acid positions in GP that independently confer complete resistance. All of the mutations reside at or near the GP1-GP2 intersubunit interface in the membrane-proximal base of the prefusion GP trimer. This region forms a part of the “clamp” that holds the fusion subunit GP2 in its metastable prefusion conformation. Biochemical studies suggest that most of the mutations confer CatB independence not by altering specific cleavage sites in GP but rather by inducing conformational rearrangements in the prefusion GP trimer that dramatically enhance its susceptibility to proteolysis. The remaining mutants did not show the preceding behavior, indicating the existence of multiple mechanisms for acquiring CatB independence during entry. Altogether, our findings suggest that CatB cleavage is required to facilitate the triggering of viral membrane fusion by destabilizing the prefusion conformation of EBOV GP.Filoviruses are enveloped, filamentous, nonsegmented negative-sense RNA viruses that can cause a deadly hemorrhagic fever with case fatality rates in excess of 90% (see references 4, 20, and 37 for recent reviews). All known filoviruses belong to one of two genera: Ebolavirus (EBOV), consisting of the five species Zaire (ZEBOV), Côte d''Ivoire, Sudan, Reston, and Bundibugyo (tentative); and Marburgvirus, consisting of the single Lake Victoria species (21, 62).Cell entry by filoviruses is mediated by their envelope glycoprotein, GP (60, 68). Mature GP is a trimer of three disulfide-linked GP1-GP2 heterodimers. GP1 and GP2 are generated by endoproteolytic cleavage of the GP0 precursor polypeptide by a furin-like protease during transport to the cell surface (31, 39, 63, 69). The membrane-distal subunit, GP1, mediates viral adhesion to host cells (10, 18, 38, 42, 56, 59) and regulates the activity of the transmembrane subunit, GP2, which catalyzes fusion of viral and cellular membrane bilayers (30, 39, 41, 64, 65). The consequence of membrane fusion is cytoplasmic delivery of the viral nucleocapsid cargo.Lee et al. (39) recently solved the crystal structure of a ZEBOV GP prefusion trimer lacking the heavily glycosylated GP1 mucin domain (Muc) and the GP2 transmembrane domain (see Fig. Fig.5).5). The three GP1 subunits together form a bowl-like structure encircled by sequences from the three GP2 subunits. The trimer is held together by GP1-GP2 and GP2-GP2 contacts; the hydrophobic GP2 fusion loop packs against the external surface of adjacent GP1 subunits, and each GP2 subunit contributes a strand to a trimeric α-helical coiled-coil stem. GP1 is organized into three subdomains. The base is intimately associated with GP2 and clamps it in its prefusion conformation. The head is proposed to mediate virus receptor binding during entry (10, 18, 38, 42). The glycan cap resides at the top of the trimer and is critical for GP assembly but must be removed during entry (see below) (31, 42). The base and glycan cap are connected by the β13-β14 loop, which was not visualized in the structure. The location and structure of the Muc domain are also unknown, but it is proposed to sheathe the top and/or sides of the prefusion GP trimer (39). Muc is dispensable for ZEBOV GP-dependent entry in tissue culture but may play roles in virus-cell adhesion and immune evasion in vivo (31, 42, 44, 56, 59).Open in a separate windowFIG. 5.CA074R mutations localize at or near the GP1-GP2 interface in the GP prefusion crystal structure. In all diagrams, GP1 is depicted in blue, GP2 in red, GP1 CA074R mutations in green, and GP2 CA074R mutations in yellow. (A) Linear representation of the amino acid sequence of GPΔMuc. S-S indicates the intersubunit disulfide bond between C53 and C609. sp, signal peptide; fl, fusion loop; hr1 and hr2, heptad repeats; tm, transmembrane domain; N, N terminus; C, C terminus. (B) Structure of GP in a prefusion conformation (39). Cartoon representation of a GP1-GP2 monomer is shown. Remaining subunits are shown as a surface-shaded watermark. The boxed inset contains the membrane-proximal base of the trimer, in which the CA074R mutations are located. The β13-β14 loop is modeled as a chain of blue circles. (C) Magnified view of the inset shown in panel B rotated by 90°. The side chains of D47, I584, K588, and their contacting residues are shown. Dashed pink lines connect atoms from different side chains separated by ≤3.9 Å. Other CA074R residues are not shown for clarity. (D) View shown in panel C rotated by 90°. (E) Schematic diagram of the potential interactions made by residues mutated in the CA074R viruses. Residues approaching ≤3.9 Å to each CA074R residue are shown. Beige arcs, hydrophobic interactions; dashed lines, potential ionic interactions. Visualizations of the GP structures shown in panels B to D (Protein Data Bank accession no. 3CSY) were rendered in Pymol (Delano Scientific).Crystal structures of ZEBOV GP2 in its postfusion conformation indicate that filovirus GP is a “class I” viral membrane fusion protein (41, 65). Like the prototypic class I fusion proteins of human immunodeficiency virus and influenza virus, GP2 contains a hydrophobic fusion peptide near its N terminus and N- and C-terminal α-helical heptad repeat sequences (HR1 and HR2, respectively) (22, 28, 30, 39, 41, 64, 65, 67) (see Fig. Fig.5).5). GP2 drives membrane fusion by undergoing large-scale conformational changes; the prefusion HR1 helix-loop-helix rearranges to an unbroken α-helix, projecting the fusion loop into the endosomal membrane, and GP2 jackknifes on itself to form a hairpin-like structure in which the HR2s pack against grooves in the trimeric HR1 coiled coil (41, 65).The available GP structures make clear that the transition of GP2 from prefusion to postfusion conformation requires its release from its binding groove in the GP1 base subdomain. For all known class I fusion proteins, this transition is controlled by priming and triggering events. Priming typically involves a single endoproteolytic cleavage of the glycoprotein mediated by a cellular protease within the secretory pathway of the virus-producer cells (e.g., human immunodeficiency virus ENV → SU + TM by furin [27]). This cleavage is essential because it liberates an N-terminal fusion peptide and allows the glycoprotein to rearrange during fusion. Unusually for a class I fusion glycoprotein, however, ZEBOV GP does not require cleavage to GP1 and GP2 by a furin-like protease, even though this cleavage occurs efficiently (46, 69). Instead, the GP trimer is primed by extensive proteolytic remodeling during entry. This process is mediated by cysteine cathepsins, a class of papain superfamily cysteine proteases active within the cellular endosomal/lysosomal pathway (14, 54).The cysteine cathepsins B (CatB) and L (CatL) play essential and accessory roles, respectively, in ZEBOV entry into Vero cells (14). The functions of these enzymes in viral entry can be recapitulated in vitro. Incubation of vesicular stomatitis virus (VSV) pseudotypes bearing ZEBOV GP (VSV-GP) with a mixture of purified human CatL and CatB, or with the bacterial protease thermolysin (THL), results in the cleavage and removal of GP1 Muc and glycan cap sequences, leaving a stable ∼17-kDa N-terminal GP1 fragment and intact GP2 (see Fig. Fig.5)5) (18, 54). VSV particles containing this GP17K intermediate no longer require CatB activity within cells, strongly suggesting that this protease plays a critical role in generating a related primed species during viral entry (54). Strikingly, incubation of VSV-GP with CatL alone (14, 54) or with bovine chymotrypsin (CHT) (this study) (Fig. (Fig.1;1; see also Fig. Fig.7)7) generates a similar but distinct GP18K intermediate (containing a slightly larger ∼18-kDa GP1 fragment) that cannot bypass the requirement for CatB during entry. Therefore, the removal of a few residues from GP18K by CatB is crucial for viral entry. The reason for this requirement is unknown. Finally, VSV-GP17K particles cannot infect cells completely devoid of cysteine cathepsin activity, indicating the existence of at least one additional cysteine protease-dependent step during entry (34, 54; present study). The signal that acts on a fully primed GP intermediate to trigger membrane fusion remains unknown.Open in a separate windowFIG. 1.CatB activity is required for entry of ZEBOV GP-dependent entry, whereas CatL activity is dispensable. Vero cells were pretreated for 4 h with 1% (vol/vol) DMSO (vehicle), 0.5 μM FYdmk (CatL-selective inhibitor), 80 μM CA074 (CatB-selective inhibitor), 0.5 μM FYdmk plus 80 μM CA074, or 300 μM E64 (pan-cysteine cathepsin inhibitor). (A) The cells were then challenged with VSV-GPΔMuc, CHT-derived VSV-GP18K (CHT-GP18K), THL-derived VSV-GP17K (THL-GP17K), or VSV-G pseudotypes at a low MOI (0.02 to 0.1 eGFP-positive infectious units [iu] per cell) in the presence of drug, and viral titers (iu/ml) were determined at 18 h postinfection. CatB and CatL activities in extracts prepared from a parallel set of pretreated cells were measured by fluorogenic peptide turnover and are shown (bottom). Averages ± standard deviations (SD) for six trials from three independent experiments are shown. CatL activity below the detection threshold is indicated as zero without an accompanying SD. (B) Vero cells pretreated with protease inhibitors were challenged with VSV-GPΔMuc, cathepsin L-derived VSV-GP18K (CatL-GP18K), or cathepsin B-derived VSV-GP17K (CatB-GP17K), and viral infectivity was measured as described above. Averages ± SD for three trials from a representative experiment are shown.Open in a separate windowFIG. 7.rVSV-GPΔMuc mutants resemble the WT in cleavage to GP18K and GP17K intermediates. WT or mutant rVSV-GPΔMuc was incubated with the indicated protease(s) as described in Materials and Methods and then deglycosylated with PNGaseF (except for N40K and T42A, which lack the N40 glycan and do not require deglycosylation at this position). The resulting GP1 proteolytic fragments were resolved by SDS-PAGE and detected by Western blotting. Shorter protease incubation times were necessary to obtain cleavage intermediates for some mutants (see text for details). Positions of uncleaved GP1 and the ∼18-kDa and ∼17-kDa cleavage fragments are indicated on the left. *, partially cleaved GP fragment of unknown composition. Experimental samples shown on each gel (bold labels) were flanked by WT samples cleaved with CHT (WT 18K) or THL (WT 17K) to provide markers of band mobility.In this study, we used a forward genetic strategy to investigate the CatB-dependent step in ZEBOV entry. Specifically, we engineered and rescued a recombinant VSV (rVSV) encoding a mucin domain-deleted ZEBOV GP in place of the VSV glycoprotein G and used it to select viral mutants resistant to the CatB inhibitor CA074. Analysis of these viruses identified mutations in both GP1 and GP2 that allow CatB-independent cell entry. We found that GP18K and/or GP17K intermediates derived from some but not all of the mutant GPs are conformationally distinct from the wild type (WT), suggesting the existence of multiple mechanisms for CA074 resistance. Taken together, our results indicate that ZEBOV GP→GP17K cleavage by CatB promotes fusion triggering and viral entry by destabilizing the prefusion conformation of GP.  相似文献   

8.
Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.  相似文献   

9.
The filoviruses Marburg virus and Ebola virus cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (VSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Here, we performed a proof-of-concept study in order to determine the potential of having one single-injection vaccine capable of protecting nonhuman primates against Sudan ebolavirus (SEBOV), Zaire ebolavirus (ZEBOV), Cote d''Ivoire ebolavirus (CIEBOV), and Marburgvirus (MARV). In this study, 11 cynomolgus monkeys were vaccinated with a blended vaccine consisting of equal parts of the vaccine vectors VSVΔG/SEBOVGP, VSVΔG/ZEBOVGP, and VSVΔG/MARVGP. Four weeks later, three of these animals were challenged with MARV, three with CIEBOV, three with ZEBOV, and two with SEBOV. Three control animals were vaccinated with VSV vectors encoding a nonfilovirus GP and challenged with SEBOV, ZEBOV, and MARV, respectively, and five unvaccinated control animals were challenged with CIEBOV. Importantly, none of the macaques vaccinated with the blended vaccine succumbed to a filovirus challenge. As expected, an experimental control animal vaccinated with VSVΔG/ZEBOVGP and challenged with SEBOV succumbed, as did the positive controls challenged with SEBOV, ZEBOV, and MARV, respectively. All five control animals challenged with CIEBOV became severely ill, and three of the animals succumbed on days 12, 12, and 14, respectively. The two animals that survived CIEBOV infection were protected from subsequent challenge with either SEBOV or ZEBOV, suggesting that immunity to CIEBOV may be protective against other species of Ebola virus. In conclusion, we developed an immunization scheme based on a single-injection vaccine that protects nonhuman primates against lethal challenge with representative strains of all human pathogenic filovirus species.Marburgvirus (MARV) and Ebolavirus (EBOV), the causative agents of Marburg and Ebola hemorrhagic fever (HF), respectively, represent the two genera that comprise the family Filoviridae (8, 24). The MARV genus contains a single species, Lake Victoria marburgvirus. The EBOV genus is divided into four distinct species: (i) Sudan ebolavirus (SEBOV), (ii) Zaire ebolavirus (ZEBOV), (iii) Cote d''Ivoire ebolavirus (CIEBOV), and (iv) Reston ebolavirus (REBOV). A putative fifth species of EBOV was associated with an outbreak in Uganda late in 2007 (33). MARV, ZEBOV, and SEBOV are important human pathogens, with case fatality rates frequently ranging between 70% and 90% for ZEBOV, around 50% for SEBOV, and up to 90% for MARV outbreaks depending on the strain of MARV (reviewed in reference 24). CIEBOV caused deaths in chimpanzees and a severe nonlethal human infection in a single case in the Republic of Cote d''Ivoire in 1994 (21). REBOV is highly lethal for macaques but is not thought to cause disease in humans, although the pathogenic potential of REBOV in humans remains unknown (24). An outbreak of REBOV in pigs was recently reported in the Philippines; however, it is unclear whether the disease observed in the pigs was caused by REBOV or other agents detected in the animals, including porcine reproductive and respiratory syndrome virus (5, 22).While there are no FDA-approved vaccines or postexposure treatment modalities available for preventing or managing EBOV or MARV infections, there are at least five different vaccine systems that have shown promise in completely protecting nonhuman primates against EBOV, and four of these systems have also been shown to protect macaques against MARV HF (3, 6, 12, 18, 20, 28-31, 35). Several of these vaccine platforms require multiple injections to confer protective efficacy (3, 18, 30, 31, 35). However, for agents such as EBOV and MARV, which are indigenous to Africa and are also potential agents of bioterrorism, a single-injection vaccine is preferable. In the case of preventing natural infections, multiple-dose vaccines are both too costly and not practicable (logistics and compliance) in developing countries. In the case of a deliberate release of these agents, there would be little time for deployment of a vaccine that requires multiple injections. Thus, for most practical applications, a vaccine against the filoviruses necessitates a single immunization.Of the prospective filovirus vaccines, only two systems, one based on a replication-defective adenovirus serotype 5 and the other based on the recombinant vesicular stomatitis virus (VSV), were shown to provide complete protection to nonhuman primates when administered as a single-injection vaccine (6, 12, 20, 28, 29). Most intriguingly, the VSV-based vaccine is the only vaccine which has shown utility when administered as a postexposure treatment against filovirus infections (7, 9, 15). Here, we evaluated the utility of combining our VSV-based EBOV and MARV vectors into a single-injection vaccine and determined the ability of this blended vaccine to protect nonhuman primates against three species of EBOV and MARV. Furthermore, we assessed the reusability of the VSV vectors in our macaque models of filovirus HF.  相似文献   

10.
The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas.  相似文献   

11.
Ebola virus(EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein(GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses.However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 ℃. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.  相似文献   

12.
Cellular cathepsins are required for Ebola virus infection and are believed to proteolytically process the Ebola virus glycoprotein (GP) during entry. However, the significance of cathepsin cleavage during infection remains unclear. Here we demonstrate a role for cathepsin L (CatL) cleavage of Ebola virus GP in the generation of a stable 18-kDa GP1 viral intermediate that exhibits increased binding to and infectivity for susceptible cell targets. Cell binding to a lymphocyte line was increased when CatL-proteolysed pseudovirions were used, but lymphocytes remained resistant to Ebola virus GP-mediated infection. Genetic removal of the highly glycosylated mucin domain in Ebola virus GP resulted in cell binding similar to that observed with CatL-treated full-length GP, and no overall enhancement of binding or infectivity was observed when mucin-deleted virions were treated with CatL. These results suggest that cathepsin cleavage of Ebola virus GP facilitates an interaction with a cellular receptor(s) and that removal of the mucin domain may facilitate receptor binding. The influence of CatL in Ebola virus GP receptor binding should be useful in future studies characterizing the mechanism of Ebola virus entry.  相似文献   

13.
14.
15.

Background

Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50–90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP1,2) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP1,2 trimeric, viral surface spike. After entry into host endosomes, GP1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown.

Principal Findings

We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP1,2. Further, ELISA binding data of primed GP1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion.

Significance

The results reveal that the ebolavirus GP1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.  相似文献   

16.
Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target.  相似文献   

17.
Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. Therefore, it is important to develop a vaccine that can prevent infection by both lethal species. Here, we describe the bivalent cAdVaxE(GPs/z) vaccine, which includes the SEBOV glycoprotein (GP) and ZEBOV GP genes together in a single complex adenovirus-based vaccine (cAdVax) vector. Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design.  相似文献   

18.
Identification of host factors that are needed for Zaire Ebolavirus (EBOV) entry provides insights into the mechanism(s) of filovirus uptake, and these factors may serve as potential antiviral targets. In order to identify novel host genes and pathways involved in EBOV entry, gene array findings in the National Cancer Institute''s NCI-60 panel of human tumor cell lines were correlated with permissivity for EBOV glycoprotein (GP)-mediated entry. We found that the gene encoding the γ2 subunit of AMP-activated protein kinase (AMPK) strongly correlated with EBOV transduction in the tumor panel. The AMPK inhibitor compound C inhibited infectious EBOV replication in Vero cells and diminished EBOV GP-dependent, but not Lassa fever virus GPC-dependent, entry into a variety of cell lines in a dose-dependent manner. Compound C also prevented EBOV GP-mediated infection of primary human macrophages, a major target of filoviral replication in vivo. Consistent with a role for AMPK in filovirus entry, time-of-addition studies demonstrated that compound C abrogated infection when it was added at early time points but became progressively less effective when added later. Compound C prevented EBOV pseudovirion internalization at 37°C as cell-bound particles remained susceptible to trypsin digestion in the presence of the inhibitor but not in its absence. Mouse embryonic fibroblasts lacking the AMPKα1 and AMPKα2 catalytic subunits were significantly less permissive to EBOV GP-mediated infection than their wild-type counterparts, likely due to decreased macropinocytic uptake. In total, these findings implicate AMPK in macropinocytic events needed for EBOV GP-dependent entry and identify a novel cellular target for new filoviral antivirals.  相似文献   

19.
Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses.  相似文献   

20.
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.Enveloped viruses enter cells by a variety of different pathways. Productive internalization of enveloped viruses with targeted cells is mediated through interactions of the viral glycoprotein(s) (GPs) with moieties on the surface of the cell. In general, enveloped viral entry occurs through viral adherence to the cell surface, interaction with a specific plasma membrane-associated receptor that results in a series of GP conformational changes leading to fusion of viral and cellular membranes, and delivery of the viral core particle into the cytoplasm. Fusion of the two membranes can occur at the plasma membrane or by uptake of the intact virions into endosomes with subsequent membrane fusion between the viral membrane and the lipid bilayer of the endocytic vesicle. Human immunodeficiency virus (HIV) is an example of a virus that fuses directly to the plasma membrane (5), whereas influenza virus must be internalized into acidified vesicles where the appropriate GP conformational changes can occur, mediating membrane fusion (21). Most enveloped viruses that enter through vesicles utilize a low-pH environment to mediate the necessary conformational changes in GP that induce membrane fusion (37).Ebola virus (EBOV) and vesicular stomatitis virus (VSV) are enveloped, single-stranded, negative-sense RNA viruses belonging to the families Filoviridae and Rhabdoviridae, respectively. Though they share similarity in genome organization and a broad tropism for a variety of cell types, they differ greatly in their pathogenicities (29, 39). EBOV causes severe hemorrhagic fever that is frequently fatal, whereas VSV infects mainly livestock, generating fluid-filled vesicles on mucosal surfaces.Interestingly, the receptor(s) that mediate entry of these two viruses have yet to be definitively identified. C-type lectins such as DC-SIGN and DC-SIGNR are thought to serve as adherence factors for EBOV (26). Other plasma membrane-associated proteins have been implicated in EBOV uptake including folate receptor alpha and the tyrosine kinase receptor Axl (6, 35, 36, 38), but the physical interaction of EBOV GP and these proteins has not been demonstrated, and cells that do not express these proteins are permissive for EBOV GP-mediated virion uptake. VSV was shown to bind ubiquitously to cells via phosphatidylserine (PS) (31). However, a more recent study reports that PS is not a receptor for VSV as no correlation was found between cell surface PS levels and VSV infection, and annexin V, which binds specifically to PS, did not inhibit infection of VSV (9).Both viruses enter cells through a low-pH-dependent, endocytosis-mediated process. A large body of evidence indicates that VSV is internalized via clathrin-coated pits, with a reduction in pH mediating reversible alterations in the GP leading to membrane fusion (40). EBOV may also enter cells by clathrin-mediated endocytosis (30), but lipid raft-associated, caveolin-mediated endocytosis has also been proposed as a mechanism of EBOV uptake (11). Low-pH events lead to cathepsin-dependent cleavage of EBOV GP that is required for productive uptake of the virus (8, 19, 33). Other low-pH-dependent events have been postulated to be required as well (33).To identify genes whose expression correlated with EBOV GP-dependent transduction, we compared the relative transduction efficiency of EBOV GP pseudotyped virions on a panel of human tumor cell lines with gene expression data from cDNA microarrays developed for the same panel of cell lines (20). The gene array data are available from the Developmental Therapeutics Program at the National Cancer Institute (NCI) website (http://dtp.nci.nih.gov/). A significant correlation was observed between expression of RhoC, a member of the small GTP-binding Rho GTPase family, and permissivity for EBOV transduction. Surprisingly, a significant correlation was also observed between VSV glycoprotein (VSVG)-mediated transduction and RhoC expression. In this study, we report that modulation of RhoC expression by transfection of expression plasmids or treatment with an inhibitor alters transduction by virions pseudotyped with either EBOV GP or VSVG and fusion of EBOV virus-like particles (VLPs). RhoC expression also significantly enhanced wild-type VSV infection. We also examine the differential effect each Rho GTPase has on nonspecific endocytotic uptake of exogenous material and on organization of the actin filament. Our findings suggest that RhoC enhances entry of EBOV GP and VSVG pseudovirions through modulation of fluid-phase endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号