首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we focused on gravity-sensitive proteins of two human thyroid cancer cell lines (ML-1; RO82-W-1), which were exposed to a 2D clinostat (CLINO), a random positioning machine (RPM) and to normal 1g-conditions. After a three (3d)- or seven-day-culture (7d) on the two devices, we found both cell types growing three-dimensionally within multicellular spheroids (MCS) and also cells remaining adherent (AD) to the culture flask, while 1g-control cultures only formed adherent monolayers, unless the bottom of the culture dish was covered by agarose. In this case, the cytokines IL-6 and IL-8 facilitated the formation of MCS in both cell lines using the liquid-overlay technique at 1g. ML-1 cells grown on the RPM or the CLINO released amounts of IL-6 and MCP-1 into the supernatant, which were significantly elevated as compared to 1g-controls. Release of IL-4, IL-7, IL-8, IL-17, eotaxin-1 and VEGF increased time-dependently, but was not significantly influenced by the gravity conditions. After 3d on the RPM or the CLINO, an accumulation of F-actin around the cellular membrane was detectable in AD cells of both cell lines. IL-6 and IL-8 stimulation of ML-1 cells for 3d and 7d influenced the protein contents of ß1-integrin, talin-1, Ki-67, and beta-actin dose-dependently in adherent cells. The ß1-integrin content was significantly decreased in AD and MCS samples compared with 1g, while talin-1 was higher expressed in MCS than AD populations. The proliferation marker Ki-67 was elevated in AD samples compared with 1g and MCS samples. The ß-actin content of R082-W-1 cells remained unchanged. ML-1 cells exhibited no change in ß-actin in RPM cultures, but a reduction in CLINO samples. Thus, we concluded that simulated microgravity influences the release of cytokines in follicular thyroid cancer cells, and the production of ß1-integrin and talin-1 and predicts an identical effect under real microgravity conditions.  相似文献   

2.
We have previously shown that culturing HepG2 cells in pH 6.6 culture medium increases the c‐Src‐dependent tyrosine phosphorylation of β‐catenin and induces disassembly of adherens junctions (AJs). Here, we investigated the upstream mechanism leading to this pH 6.6‐induced modification of E‐cadherin. In control cells cultured at pH 7.4, E‐cadherin staining was linear and continuous at cell–cell contact sites. Culturing cells at pH 6.6 was not cytotoxic, and resulted in weak and discontinuous junctional E‐cadherin staining, consistent with the decreased levels of E‐cadherin in membrane fractions. pH 6.6 treatment activated c‐Src and Fyn kinase and induced tyrosine phosphorylation of p120 catenin (p120ctn) and E‐cadherin. Inhibition of Src family kinases by PP2 attenuated the pH 6.6‐induced tyrosine phosphorylation of E‐cadherin and p120ctn, and prevented the loss of these proteins from AJs. In addition, E‐cadherin was bound to Hakai and ubiquitinated. Furthermore, pH 6.6‐induced detachment of E‐cadherin from AJs was blocked by pretreatment with MG132 or NH4Cl, indicating the involvement of ubiquitin‐proteasomal/lysosomal degradation of E‐cadherin. An early loss of p120ctn prior to E‐cadherin detachment from AJs was noted, concomitant with a decreased association between p120ctn and E‐cadherin at pH 6.6. PP2 pretreatment prevented the dissociation of these two proteins. In conclusion, pH 6.6 activated Src kinases, resulting in tyrosine phosphorylation of E‐cadherin and p120ctn and a weakening of the association of E‐cadherin with p120ctn and contributing to the instability of E‐cadherin at AJs. J. Cell. Biochem. 108: 851–859, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E‐cadherin, hijack the host adherens junction (AJ) machinery and invade non‐phagocytic cells by a clathrin‐dependent mechanism. Here, we investigate a potential role for clathrin in cell–cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell–cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E‐cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E‐cadherin. We demonstrate that non‐adherent cells expressing the InlA chimera, as bacteria, can be internalized by E‐cadherin‐expressing adherent cells. Together these results reveal that a common clathrin‐mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.  相似文献   

4.
Epithelial cadherin (E‐cadherin) is a 120 kDa cell–cell adhesion molecule involved in the establishment of epithelial adherens junctions. It is connected to the actin cytoskeleton by adaptor proteins such as β‐catenin. Loss of E‐cadherin expression/function has been related to tumor progression and metastasis. Several molecules associated with down‐regulation of E‐cadherin have been described, within them neural cadherin, Twist and dysadherin. Human breast cancer cell lines IBH‐6 and IBH‐4 were developed from ductal primary tumors and show characteristic features of malignant epithelial cells. In this study expression of E‐cadherin and related proteins in IBH‐6 and IBH‐4 cell lines was evaluated. In IBH‐6 and IBH‐4 cell extracts, only an 89 kDa E‐cadherin form (Ecad89) was detected, which is truncated at the C‐terminus and is present at low levels. Moreover, no accumulation of the 86 kDa E‐cadherin ectodomain and of the 38 kDa CTF1 fragment was observed. IBH‐6 and IBH‐4 cells showed an intracellular scattered E‐cadherin localization. β‐catenin accompanied E‐cadherin localization, and actin stress fibers were identified in both cell types. E‐cadherin mRNA levels were remarkably low in IBH‐6 and IBH‐4 cells. The E‐cadherin mRNA and genomic sequence encoding exons 14–16 could not be amplified in either cell line. Neither the mRNA nor the protein of neural cadherin and dysadherin were detected. Up‐regulation of Twist mRNA was found in both cell lines. In conclusion, IBH‐6 and IBH‐4 breast cancer cells show down‐regulation of E‐cadherin expression with aberrant protein localization, and up‐regulation of Twist; these features can be related to their invasive/metastatic characteristics. J. Cell. Physiol. 222: 596–605, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Chemopreventive approaches for the treatment of breast cancer have been validated clinically and with in vitro studies. The combined action of tamoxifen/all‐trans retinoic acid was advantageous in MCF‐7 cells, reducing cell proliferation, Bcl‐2 and c‐Myc protein levels and increasing E‐Cadherin protein levels and Gap junctional Intercellular Communication. We further investigated their combined effect in the presence of bradykinin, a pro‐inflammatory agent, previously reported to contribute to the proliferation of breast cancer cells. Bradykinin increased MCF‐7 cell proliferation, c‐Myc levels and ERK1/2 activity. The co‐incubation of bradykinin‐MCF‐7 cells with tamoxifen/all‐trans retinoic acid reduced cell proliferation, ERK1/2 activity, as well as Bcl‐2, c‐Myc, and bradykinin receptor‐2 levels, without altering the enhanced E‐cadherin levels induced by tamoxifen/all‐trans retinoic acid. We showed that the anti‐tumoral effect of tamoxifen/all‐trans retinoic acid is beneficial in MCF‐7 breast cancer cells grown in a bradykinin‐pro‐mitogenic environment, an effect that might be, at least in part, through the MAPK pathway and B2‐bradykinin receptor inhibition. J. Cell. Biochem. 106: 473–481, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
7.
Mammalian and prokaryotic high‐temperature requirement A (HtrA) proteins are chaperones and serine proteases with important roles in protein quality control. Here, we describe an entirely new function of HtrA and identify it as a new secreted virulence factor from Helicobacter pylori, which cleaves the ectodomain of the cell‐adhesion protein E‐cadherin. E‐cadherin shedding disrupts epithelial barrier functions allowing H. pylori designed to access the intercellular space. We then designed a small‐molecule inhibitor that efficiently blocks HtrA activity, E‐cadherin cleavage and intercellular entry of H. pylori.  相似文献   

8.
9.
Inactivation of different small GTPases upon their glucosylation by lethal toxin from Clostridium sordellii strain IP82 (LT‐82) is already known to lead to cell rounding, adherens junction (AJ) disorganization and actin depolymerization. In the present work, we observed that LT‐82 induces a rapid dephosphorylation of paxillin, a protein regulating focal adhesion (FA), independently of inactivation of paxillin kinases such as Src, Fak and Pyk2. Among the small GTPases inactivated by this toxin, including Rac, Ras, Rap and Ral, we identified Rac1, as responsible for paxillin dephosphorylation using cells overexpressing Rac1V12. Rac1 inactivation by LT‐82 modifies interactions between proteins from AJ and FA complexes as shown by pull‐down assays. We showed that in Triton X‐100‐insoluble membrane proteins from these complexes, namely E‐cadherin, β‐catenin, p120‐catenin and talin, are decreased upon LT‐82 intoxication, a treatment that also induces a rapid decrease in cell phosphoinositide content. Therefore, we proposed that Rac inactivation by LT‐82 alters phosphoinositide metabolism leading to FA and AJ complex disorganization and actin depolymerization.  相似文献   

10.
11.
12.
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity‐associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa? and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine‐treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non‐oxidative components, particularly neutrophil proteases and the bactericidal/permeability‐increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa? Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal.  相似文献   

13.
The possibility of differentiating bone marrow‐derived mesenchymal stem cells (BMSCs) into tubular epithelial‐like cells is explored in vitro. Purified BMSCs from Sprague–Dawley rats were obtained by density gradient centrifugation. Third generation BMSCs were divided into six groups and were cultured under different conditions. The expression of alkaline phosphatase and cytokeratin (CK)‐18 protein was detected through staining and immunocytochemistry, respectively, and the expression of E‐cadherin proteins was recorded through immunofluorescence. Some cells in ischemia/reperfusion (I/R), all‐trans retinoic acid (ATRA), epidermal growth factor (EGF) and bone morphogenetic protein‐7 (BMP‐7) groups turned positive, whereas the positive cells in the combined group significantly increased compared with the other groups. Compared with the control group, the positive expression rates of CK‐18 in the I/R, ATRA, EGF, BMP‐7 and the combined group were 11·50% ± 3·84%, 27·40% ± 2·70%, 29·60% ± 4·51%, 26·80% ± 5·00% and 44·00% ± 3·16%, respectively, and CK‐18 mRNA expression in the combined group was obviously higher than that in the other groups (P < 0·01). Immunofluorescence detection showed that E‐cadherin expression was not detectable in the control group, whereas the positive expression rates of E‐cadherin in the I/R, ATRA, EGF, BMP‐7 and the combined group were 6·75% ± 2·13%, 16·40% ± 2·69%, 18·25% ± 3·50%, 16·06% ± 2·00% and 30·26% ± 5·16%, respectively. The addition of ATRA, EGF and BMP‐7 induces BMSCs differentiation into tubular epithelial‐like cells in stimulated acute renal failure microenvironment in vitro. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Breast cancer is the most common malignancy in women and the appearance of distant metastases produces the death in 98% of cases. The retinoic acid receptor β (RARβ) is not expressed in 50% of invasive breast carcinoma compared with normal tissue and it has been associated with lymph node metastasis. Our hypothesis is that RARβ protein participates in the metastatic process. T47D and MCF7 breast cancer cell lines were used to perform viability assay, immunobloting, migration assays, RNA interference and immunofluorescence. Administration of retinoic acid (RA) in breast cancer cells induced RARβ gene expression that was greatest after 72 hrs with a concentration 1 μM. High concentrations of RA increased the expression of RARβ causing an inhibition of the 60% in cell migration and significantly decreased the expression of migration‐related proteins [moesin, c‐Src and focal adhesion kinase (FAK)]. The treatment with RARα and RARγ agonists did not affect the cell migration. On the contrary, the addition of the selective retinoid RARβ‐agonist (BMS453) significantly reduced cell migration comparable to RA inhibition. When RARβ gene silencing was performed, the RA failed to significantly inhibit migration and resulted ineffective to reduce moesin, c‐Src and FAK expressions. RARβ is necessary to inhibit migration induced by RA in breast cancer cells modulating the expression of proteins involved in cell migration.  相似文献   

15.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

16.

Objective

To assess the level of maturation and proliferation of epithelial cells and the correlation with immunocytochemical expression of adhesion (E‐cadherin) and cell differentiation (involucrin) markers.

Methods

Cytopathological samples were obtained from four groups of patients: control (CG, n=30); alcohol/tobacco (ATG, n=31), leucoplakia (LG, n=31), and squamous cell carcinoma (SCCG, n=22). Cytopathological smears were collected from all groups for AgNOR, Papanicolaou and immunocytochemical staining.

Results

There was an increase in anucleated cells in ATG compared to CG and in LG compared to lesion‐free groups (P<.05). In addition, there was a higher rate of intermediate cells in lesion‐free groups than in LG (P=.001). When these findings were correlated with positive E‐cadherin expression, there was a smaller number of anucleated and intermediate cells (P<.05). The proliferation rate was higher in the SCCG than in the CG (P<.05) and in the ATG compared to LG (P<.05). Moreover, cell proliferation increased in the presence of positive E‐cadherin expression in the ATG and LG. No statistically significant results were obtained for involucrin analysis.

Conclusion

Cytopathology combined with quantitative techniques such as Papanicolaou, AgNOR, and immunocytochemical expression of E‐cadherin detects changes associated with oral carcinogenesis. The innovative approach used in this study allows assessing the expression of cell adhesion (E‐cadherin) and differentiation (involucrin) markers by means of oral mucosal cytopathology. The E‐cadherin imunocytochemical expression indicated changes associated with the oral carcinogenesis process. An increase in cell proliferation rate in oral squamous cell carcinoma group was associated with the lower immunoexpression of E‐cadherin. Cytopathology combined with quantitative techniques and immunocytochemical expression of E‐cadherin may detect early alterations associated with oral carcinogenesis.  相似文献   

17.
The role of caveolin‐1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E‐cadherin in CAV1‐dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E‐cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co‐expression of E‐cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav‐1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E‐cadherin expression in B16F10 (E‐cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co‐expression of CAV1 and E‐cadherin in B16F10 (cav‐1/E‐cad) cells abolishes tumor formation, lung metastasis, increased Rac‐1 activity, and cell migration observed with B16F10 (cav‐1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac‐1 activation in these cells.  相似文献   

18.
蛋白酪氨酸磷酸酶SHP-2在乳腺癌细胞移动及粘附中的作用   总被引:2,自引:0,他引:2  
探讨蛋白酪氨酸磷酸酶SHP 2在乳腺癌细胞MCF 7的移动及粘附中的作用 .利用基因重组技术分别将野生型SHP 2与突变型SHP 2与绿色荧光蛋白GFP的基因片段构成重组质粒 (SHP 2 GFP、SHP 2C >S GFP) .脂质体转染法分别转入MCF 7中 ,表达成功后筛选并建立SHP 2 GFP和SHP 2C >S GFP细胞株 .荧光显微镜观察细胞移动情况 ,免疫印迹法检测粘附分子E 钙粘蛋白和金属蛋白酶MMP 1及MMP 9的表达 .实验后建立SHP 2 GFP及SHP 2C >S GFP细胞株 ,同时观察到SHP 2C >S GFP细胞的形态发生明显改变 :从梭形状态变成圆形状态 .荧光显微镜发现 ,MCF 7细胞和SHP 2 GFP、SHP 2C >S GFP转染的细胞在 3h、6h、9h的移动情况分别是MCF 7为 10 %、2 3%、5 4% ,SHP 2 GFP为 15 %、4 9%、98% ,SHP 2C >S GFP为 4 %、11%、30 % .免疫印迹结果表明 ,SHP 2C >S GFP细胞的E 钙粘蛋白表达比SHP 2 GFP细胞明显升高 (P <0 0 5 ) .MMP 1及MMP 9的表达量在SHP 2 GFP细胞中有所增强 (P <0 0 5 ) .实验表明 ,SHP 2可能通过调节粘附分子和基质金属磷酸酶而在细胞移动、粘附中发挥重要作用  相似文献   

19.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号