首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Interleukin (IL-)1 stimulates prostaglandin E(2)(PGE(2)) generation in fibroblasts, and preferential couplings between particular phospholipase A(2)(PLA(2)) and cyclooxygenase (COX) isozymes are implicated with IL-1-induced delayed PGE(2)generation. The regulatory effects of interferon (IFN)-gamma and IL-4 on IL-1beta-induced COX, PLA(2)isoforms expression and terminal delayed PGE(2)generation were examined in three types of human fibroblasts. These human fibroblasts constitutively expressed cytosolic PLA(2)(cPLA(2)) and COX-1 enzymes, and exhibited delayed PGE(2)generation in response to IL-1beta. IL-1beta also stimulated expression of cPLA(2)and COX-2 only, while constitutive and IL-1beta-induced type IIA and type V secretory PLA(2)s (sPLA(2)s) expression could not be detected. A COX-2 inhibitor and cPLA(2)inhibitor markedly suppressed the IL-1beta-induced delayed PGE(2)generation, while a type IIA sPLA(2)inhibitor failed to affect it. IFN-gamma and IL-4 dramatically inhibited the IL-1beta-induced delayed PGE(2)generation; these cytokines apparently suppressed IL-1beta-stimulated COX-2 expression and only weakly suppressed cPLA(2)expression in response to IL-1beta. These results indicate that IL-1beta-induced delayed PGE(2)generation in these human fibroblasts mainly depends on de novo induction of COX-2 and cPLA(2), irrespective of the constitutive presence of COX-1, and that IFN-gamma and IL-4 inhibit IL-1beta-induced delayed PGE(2)generation by suppressing, predominantly, COX-2 expression.  相似文献   

2.
In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes. IL-1beta significantly increased the production of H(2)O(2), and the increase was blocked by the p38 MAPK inhibitor SB-203580, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by the NADPH oxidase inhibitor apocynin, but not by the MEK1 inhibitor PD-98059. IL-1beta significantly increased the phosphorylation of p38 MAPK and cPLA(2). IL-1beta-induced cPLA(2) phosphorylation was blocked by SB-203580 but not by AACOCF3, suggesting sequential activation of p38 MAPK-phosphorylating cPLA(2). The IL-1beta-induced reduction in LES tone was partially reversed by AACOCF3 and by the Ca(2+)-insensitive PLA(2) inhibitor bromoenol lactone (BEL). IL-1beta significantly increased cyclooxygenase (COX)-2 and PGE(2) levels. The increase in PGE(2) was blocked by SB-203580, AACOCF3, BEL, and the COX-2 inhibitor NS-398 but not by PD-98059 or the COX-1 inhibitor valeryl salicylate. The data suggested that IL-1beta reduces LES tone by producing H(2)O(2), which may affect Ca(2+)-release mechanisms and increase the synthesis of COX-2 and PGE(2). Both H(2)O(2) and PGE(2) production depend on sequential activation of p38 MAPK and cPLA(2). cPLA(2) activates NADPH oxidases, producing H(2)O(2), and may produce arachidonic acid, converted to PGE(2) via COX-2.  相似文献   

3.
4.
Exposure of airway smooth muscle (ASM) cells to the cytokine IL-1beta results in an induction of PGE2 synthesis that affects numerous cell functions. Current dogma posits induction of COX-2 protein as the critical, obligatory event in cytokine-induced PGE2 production, although PGE2 induction can be inhibited without a concomitant inhibition of COX-2. To explore other putative regulatory features we examined the role of phospholipase A2 (PLA2) and PGE synthase (PGES) enzymes in IL-1beta-induced PGE2 production. Treatment of human ASM cultures with IL-1beta caused a time-dependent induction of both cytosolic PLA2 (cPLA2) and microsomal PGES (mPGES) similar to that observed for COX-2. Regulation of COX-2 and mPGES induction was similar, being significantly reduced by inhibition of p42/p44 or p38, whereas cPLA2 induction was only minimally reduced by inhibition of p38 or PKC. COX-2 and mPGES induction was subject to feed-forward regulation by PKA, whereas cPLA2 induction was not. SB-202474, an SB-203580 analog lacking the ability to inhibit p38 but capable of inhibiting IL-1beta-induced PGE2 production, was effective in inhibiting mPGES but not COX-2 or cPLA2 induction. These data suggest that although COX-2, cPLA2, and mPGES are all induced by IL-beta in human ASM cells, regulatory features of cPLA2 are dissociated, whereas those of COX-2 and mPGES are primarily associated, with regulation of PGE2 production. mPGES induction and, possibly, cPLA2 induction appear to cooperate with COX-2 to determine IL-1beta-mediated PGE2 production in human ASM cells.  相似文献   

5.
6.
7.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

8.
The expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) as well as of cytokines such as interleukin-6 (IL-6) have all been suggested to propagate neuropathology in different brain disorders such as HIV-dementia, prion diseases, stroke and Alzheimer's disease. In this report, we show that PGE2-stimulated IL-6 release in U373 MG human astroglioma cells and primary rat astrocytes. PGE2-induced intracellular cAMP formation was mediated via prostaglandin E receptor 2 (EP2), but inhibition of cAMP formation and protein kinase A or blockade of EP1/EP2 receptors did not affect PGE2-induced IL-6 synthesis. This indicates that the cAMP pathway is not part of PGE2-induced signal transduction cascade leading to IL-6 release. The EP3/EP1-receptor agonist sulprostone failed to induce IL-6 release, suggesting an involvement of EP4-like receptors. PGE2-activated p38 mitogen-activated kinase (p38 MAPK) and protein kinase C (PKC). PGE2-induced IL-6 synthesis was inhibited by specific inhibitors of p38 MAPK (SB202190) and PKC (GF203190X). Although, up to now, EP receptors have only rarely been linked to p38 MAPK or PKC activation, these results suggest that PGE2 induces IL-6 via an EP4-like receptor by the activation of PKC and p38 MAPK via an EP4-like receptor independently of cAMP.  相似文献   

9.
Interleukin-beta (IL-1beta) was found to induce inflammatory responses in the airways, which exerted a potent stimulus for PG synthesis. This study was to determine the mechanisms of IL-1beta-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). IL-1beta markedly increased COX-2 expression and PGE(2) formation in a time- and concentration-dependent manner in TSMCs. Both COX-2 expression and PGE(2) formation in response to IL-1beta were attenuated by a tyrosine kinase inhibitor, genistein, a phosphatidylcholine-phospholipase C inhibitor, D609, a phosphatidylinositol-phospholipase C inhibitor, U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. IL-1beta-induced activation of NF-kappaB correlated with the degradation of IkappaB-alpha in TSMCs. IL-1beta-induced NF-kappaB activation, COX-2 expression, and PGE(2) synthesis were inhibited by the dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. IL-1beta-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 inhibitor), but these two inhibitors had no effect on IL-1beta-induced NF-kappaB activation, indicating that activation of p42/44 and p38 MAPK and NF-kappaB signalling pathways were independently required for these responses. These findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from IL-1beta-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways in canine TSMCs. IL-1beta-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

10.
We have previously reported that interleukin (IL)-1 beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle (HASM) cells by increasing cyclooxygenase (COX)-2 expression. The purpose of this study was to determine whether p38 mitogen-activated protein (MAP) kinase is involved in these events. IL-1 beta (2 ng/ml for 15 min) increased p38 phosphorylation fourfold. The p38 inhibitor SB-203580 (3 microM) decreased IL-1 beta-induced COX-2 by 70 +/- 7% (P < 0.01). SB-203580 had no effect on PGE(2) release in control cells but caused a significant (70-80%) reduction in PGE(2) release in IL-1 beta-treated cells. IL-1 beta increased the binding of nuclear proteins to the oligonucleotides encoding the consensus sequences for activator protein (AP)-1 and nuclear factor (NF)-kappa B, but SB-203580 did not affect this binding, suggesting that the mechanism of action of p38 was not through AP-1 or NF-kappa B activation. The NF-kappa B inhibitor MG-132 did not alter IL-1 beta-induced COX-2 expression, indicating that NF-kappa B activation is not required for IL-1 beta-induced COX-2 expression in HASM cells. IL-1 beta attenuated isoproterenol-induced decreases in HASM stiffness as measured by magnetic twisting cytometry, and SB-203580 abolished this effect. These results are consistent with the hypothesis that p38 is involved in the signal transduction pathway through which IL-1 beta induces COX-2 expression, PGE(2) release, and beta-adrenergic hyporesponsiveness.  相似文献   

11.
Yang LL  Liang YC  Chang CW  Lee WS  Kuo CT  Wang CC  Lee HM  Lin CH 《Life sciences》2002,72(2):199-213
Recently, under large-scale screening experiments, we found that sphondin, a furanocoumarin derivative isolated from Heracleum laciniatum, possessed an inhibitory effect on IL-1beta-induced increase in the level of COX-2 protein and PGE(2) release in A549 cells. Accordingly, we examined in the present study the action mechanism of sphondin on the inhibition of IL-1beta-induced COX-2 protein expression and PGE(2) release in a human pulmonary epithelial cell line (A549). Pretreatment of cells with sphondin (10-50 microM) concentration-dependently attenuated IL-1beta-induced COX-2 protein expression and PGE(2) release. The IL-1beta-induced increase in COX-2 mRNA expression was also attenuated by sphondin (50 microM). The selective COX-2 inhibitor, NS-398 (0.01-1 microM), inhibited the activity of the COX-2 enzyme in a concentration-dependent manner, while sphondin (10-50 microM) had no effect. Sphondin (50 microM) did not affect the IL-1beta-induced activations of p44/42 MAPK, p38 MAPK, and JNK. Treatment of cells with sphondin (50 microM) or the NF-kappaB inhibitor, PDTC (50 microM) partially inhibited IL-1beta-induced degradation of IkappaB-alpha in the cytosol and translocation of p65 NF-kappaB from the cytosol to the nucleus. Furthermore, IL-1beta-induced NF-kappaB-specific DNA-protein complex formation in the nucleus was partially inhibited by sphondin (50 microM) or PDTC (50 microM). Taken together, we demonstrate that sphondin inhibits IL-1beta-induced PGE(2) release in A549 cells; this inhibition is mediated by suppressing of COX-2 expression, rather than by inhibiting COX-2 enzyme activity. The inhibitory mechanism of sphondin on IL-1beta-induced COX-2 expression may be, at least in part, through suppression of NF-kappaB activity. We conclude that sphondin may have the therapeutic potential as an anti-inflammatory drug on airway inflammation.  相似文献   

12.
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.  相似文献   

13.
14.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

15.
16.
This study was conducted to investigate the mechanism of interleukin-1beta (IL-1beta)-induced IL-6 production in human osteoblasts (MG-63 cells). Stimulation with IL-1beta resulted in the production of IL-6 and prostaglandin E(2) (PGE(2)). IL-6 production gradually increased and peaked 96 h after stimulation. IL-6 mRNA was detected between 4 and 72 h after IL-1beta stimulation. The patterns of PGE(2) production and the expression of cyclooxygenase-2 (COX-2) mRNA were biphasic after stimulation. Actinomycin D, cycloheximide, indomethacin, and NS-398 (COX-2 inhibitor) suppressed the production of IL-6 and PGE(2). Anti-PGE(2) antibody markedly reduced the production of IL-6. In addition, stimulation with 17-phenyl-PGE(2), a PGE receptor-1 (EP-1 receptor) agonist, led to the expression of IL-6 mRNA after pretreatment with IL-1beta. These findings indicate that IL-1beta-induced IL-6 production in MG-63 cells involves the following sequence of steps: IL-1beta-induced COX-2 activation, PGE(2) production, and EP-1 receptor signaling prior to IL-6 production.  相似文献   

17.
The proinflammatory mediator cyclooxygenase (COX)-2 and its product PGE(2) are induced in the ischemic heart, contributing to inflammatory cell infiltration, fibroblast proliferation, and cardiac hypertrophy. PGE(2) synthesis coupled to COX-2 involves two membrane-localized PGE synthases, mPGES-1 and mPGES-2; however, it is not clear how these synthases are regulated in cardiac myocytes and fibroblasts. To study this, we used primary cultures of neonatal ventricular myocytes (VM) and fibroblasts (VF) treated with IL-1beta for 24 h. To test for involvement of MAPKs in IL-1beta regulation of mPGES-1 and-2, cells were pretreated with the pharmacological inhibitors of p42/44 MAPK, p38 MAPK, and c-Jun kinase (JNK). mRNA was analyzed by RT-PCR. Protein was analyzed by densitometry of Western blots. mPGES-1 was undetectable in untreated VF but induced by IL-1beta; inhibition of either p42/44 MAPK or JNK, but not p38 MAPK, was almost completely inhibitory. In VM, inhibition of the three MAPKs reduced IL-1beta-stimulated mPGES-1 protein by 70-90%. mPGES-2 was constitutively synthesized in both VM and VF and was not regulated by IL-1beta or MAPKs. Confocal microscopy revealed colocalization of both mPGES-1 and mPGES-2 with COX-2 in the perinuclear area of both VF and VM. Finally, PGE(2) production was higher in VM than VF. Our data show that 1) mPGES-1 is induced in both VF and VM, 2) regulation of mPGES-1 by MAPK family members is different in the two cell types, 3) mPGES-2 is constitutively synthesized in both VM and VF and is not regulated, and 4) mPGES-1 and mPGES-2 are colocalized with COX-2 in both cells. Thus differences in activity of mPGES-1 and COX-2 or coupling of COX-2 with mPGES-1 may contribute to differences in PGE(2) production by myocytes and fibroblasts.  相似文献   

18.
Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.  相似文献   

19.
20.
Arginine vasopressin (AVP) induces immediate prostaglandin E(2) (PGE(2)) production in rat 3Y1 fibroblasts. Judging from effects of several inhibitors, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) and cyclooxygenase-1 (COX-1) were mainly involved in this reaction. The antagonist of vasopressin receptor V1a, and not that of V2, inhibited the AVP-induced PGE(2) synthesis, indicating that AVP activates cPLA(2)alpha through V1a receptor. Treatment of 3Y1 cells with AVP resulted in transient activation of p44/42 mitogen-activated protein kinase (MAPK) and cPLA(2)alpha, and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked not only AVP-induced PGE(2) synthesis but also MAPK activation, suggesting that PI3K is involved in the AVP-induced MAPK and cPLA(2)alpha activation, which initiates the production of PGE(2). These results suggest that PGE(2) generated by the stimulation of AVP probably modulates the physiological effects of AVP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号