首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
1. A mutant of the iso-1-cytochrome c gene from Saccharomyces cerevisiae has been constructed which contains an Arg codon, replacing the normal trimethylated Lys at position 77. 2. This mutated gene was cloned into a pGem 1 vector and used for the in vitro translation of yeast iso-1-cytochrome c. 3. Utilizing an in vitro mitochondria binding assay, it was found that the mutant cytochrome c could transverse the yeast mitochondrial membrane, however the amount of protein incorporated was 3-fold less that of the trimethylated wild type. 4. Omission of the protein methyltransferase from assays containing the wild type cytochrome c caused only a slight reduction (15%) in the amount of protein incorporated. 5. These results suggest while the lysine residue 77 of apocytochrome c is important for mitochondria uptake, the methylation of this residue seems to play a relatively minor role.  相似文献   

2.
Identification and isolation of the yeast cytochrome c gene.   总被引:25,自引:0,他引:25  
D L Montgomery  B D Hall  S Gillam  M Smith 《Cell》1978,14(3):673-680
The iso-1-cytochrome c gene of yeast has been identified and cloned using a synthetic oligodeoxynucleotide as a hybridization probe. The oligomer d[pT-T-A-G-C-A-G-A-A--C-C-G-G] is complementary to a region near the N terminal coding region of the yeast cyc 1 gene. Of several yeast Eco RI fragments which hybridize to this probe, one is changed in size by a G leads to T mutation which eliminates an Eco RI site within the cyc 1 gene. Both the wild-type and the RI- mutant forms were cloned in lambda gt vectors. Maxam-Gilbert sequencing for 91 nucleotides into the coding region for iso-1-cytochrome c yielded a DNA sequence in perfect correspondence with the known protein sequence.  相似文献   

3.
4.
5.
The four mutant genes, cyc2, cyc3, cyc8 and cyc9, that affect the levels of the two iso-cytochromes c in the yeast Saccharomyces cerevisiae have been characterized and mapped. Both cyc2 and cyc3 lower the amount of iso-1-cytochrome c and iso-2-cytochrome c; whereas, cyc8 and cyc9 increase the amount of iso-2-cytochrome c. The cyc2, cyc3, cyc8 and cyc9 genes are located, respectively, on chromosomes XV, I, II and III, and are, therefore, unlinked to each other and unlinked to CYC1, the structural gene of iso-1-cytochrome c and to CYC7, the structural gene of iso-2-cytochrome c. While some cyc3 mutants are completely or almost completely deficient in cyotchromes c, none of the cyc2 mutants contained less than 10% of parental level of cytochrome c even though over one-half of the mutants contain UAA or UAG nonsense mutations. Thus, it appears as if a complete block of the cyc2 gene product still allows the formation of a residual fraction of cytochrome c. The cyc2 and cyc3 mutant genes cause deficiencies even in the presence of CYC7, cyc8 and cyc9, which normally cause overproduction of iso-2-cytochrome c. We suggest that cyc2 and cyc3 may be involved with the regulation or maturation of the iso-cytochromes c. In addition to having high levels of iso-2-cytochromes c, the cyc8 and cyc9 mutants are associated with flocculent cells and other abnormal phenotypes. The cyc9 mutant was shown to be allelic with the tup1 mutant and to share its properties, which include the ability to utilize exogenous dTMP, a characteristic flocculent morphology, the lack of sporulation of homozygous diploids and low frequency of mating and abnormally shaped cells of alpha strains. The diverse abnormalities suggest that cyc8 and cyc9 are not simple regulatory mutants controlling iso-2-cytochrome c.  相似文献   

6.
Five chromosomal genes, CYPI to CYP5 involved in the regulation of the synthesis of iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2 are described. The function of these genes was studied either by varying the proportion of the mutated and wild type alleles in the cell vy varing the growth conditions, or else by transforming the mutants into sigma-cytoplasmic petites. We have shown a network of genetic interactions which regulate the synthesis of three structurally different proteins : iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2, by two unlinked genes : CYC1 and CYP1, one of which (CYC1) is the structural gene by iso-1-cytochrome c. Within this network the interactions are proportional to the gene dosage and are either antagonistic or synergistic depending on the allele combination and the protein studied. The mutated alleles cyp1 stimulate the synthesis of iso-2-cytochrome c, inhibit the synthesis of iso-1-cytochrome c, while the cytochrome b2 synthesis is also inhibited but by a combination of cyp1 mutated alleles CYC1 wild type allele. Other loci, CYP2, CYP3, CYP4 and CYP5 were also studied in various allelic combinations. They show some interactions between them or with CYC1 locus but these interactions are different and less pronounced than those involving loci CYP1 and CYC1.  相似文献   

7.
Sequence of the yeast iso-1-cytochrome c mRNA   总被引:8,自引:0,他引:8  
The nucleotide sequence of the yeast iso-1-cytochrome c (CYC1) mRNA is presented. The mRNA was enriched by hybridization to cloned CYC1 DNA attached to a solid matrix: either nitrocellulose filters or diazobenzyloxymethyl cellulose powder. The sequence of the 5'-end of the mRNA was determined by the extension of a CYC1-specific dodecanucleotide primer; the sequence of the 3'-end was determined using a decanucleotide d(pT8-G-A) primer. The CYC1 mRNA begins 61 nucleotides 5' to the AUG initiation codon, extends through the coding sequence to 172 to 175 nucleotides 3' to the UAA termination codon, followed by the poly(A) tail. There are no intervening sequences. Some of the sequences that the CYC1 mRNA shares in common with other eukaryotic mRNAs are discussed.  相似文献   

8.
Summary This study concerns the chromosomal genes controlling the synthesis of cytochrome c in yeast. In the wild type there are two molecular species of cytochrome c : iso-1 (major from) and iso-2 (minor form) which differ in many positions of their amino-acid sequence. A mutation, CY1cy1-1, in the structural gene for iso-1, leads to iso-1 deficiency, while retaining a normal albeit small amount of iso-2-cytochrome c.The cyI-1 mutant does not grow on DL-lactate as sole carbon source, while the wild type does. This property was used for selecting cytochrome c rich revertants (CYT) from cytochrome c deficient strains cy1-1; ca 200 revertants were isolated after extensive nitrous acid mutagenesis from a haploid cy1-1 strain or from a diploid cy1-1/cy1-1 strain and ca 30 of them were analyzed genetically and biochemically. The cytochrome c of seven (CYT) revertants was extracted and characterized; none of them contained iso-1-cytochrome c, but all contained large amount of iso-2-cytochrome csufficient to compensate for the deficiency. It was concluded that none of the revertants resulted from back mutation of cy1-1 and that the cy1-1 mutation is a deletion or some other irreversible aberration. These conclusions were corroborated by genetic analysis. It was shown that every reversion is due to a chromosomal mutation segregating as a single gene. Five unlinked gene loci, CY2A, CY2B, CY2C, CY2D, CY2E, were uncovered in this way. None of them were linked to the CY1 locus. Revertants selected in the diploid strain were dominant or semi-dominant while those selected in the haploid strain were recessive. To the first class belong alleles at loci CY2A, CY2B, CY2C, while to the latter belong alleles at loci CY2D and CY2E.Five unlinked loci are implicated in iso-2-cytochrome c synthesis. Mutations selected at these loci act as suppressors of cytochrome c deficiency caused by a deletion of the CY1 locus. In fact the muations do not restore the synthesis of the deficient protein (iso-1-cytochrome c), but increase the synthesis of an another protein, structurally alike (iso-2-cytochrome c), and having very similar if not identical physiological activity. We propose the term of compensator genes to define this type of mutations. We discuss some possible mechanisms to explain the rarity of compensator mutations and the hypothesis that the locus CY2A could correspond not only to the regulatory gene for iso-2-cytochrome c but also to the structural one.  相似文献   

9.
10.
An extensive deletion causing overproduction of yeast iso-2-cytochrome c   总被引:27,自引:0,他引:27  
G L McKnight  T S Cardillo  F Sherman 《Cell》1981,25(2):409-419
CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event.  相似文献   

11.
Site-directed mutagenesis has been used to change the codon for cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c to a threonine codon. The resulting protein is active in vivo, is methylated as in the wild-type protein and has optical properties indistinguishable from those of the wild-type protein. The threonine-107 iso-1-cytochrome c demonstrated fully reversible electrochemical behaviour and a mid-point reduction potential of 272 mV versus NHE. In addition, this mutant does not demonstrate a tendency to autoreduce or to dimerize as does the wild-type protein. These properties of the threonine-107 mutant establish that it will provide a useful background in which to make subsequent mutations for mechanistic and physical studies of yeast iso-1-cytochrome c.  相似文献   

12.
Yeast iso-1-cytochrome c: genetic analysis of structural requirements   总被引:5,自引:0,他引:5  
D M Hampsey  G Das  F Sherman 《FEBS letters》1988,231(2):275-283
We describe the use of classical and molecular genetic techniques to investigate the folding, stability, and enzymatic requirements of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. Interpretation of the defects associated with an extensive series of altered forms of iso-1-cytochrome c was facilitated by the recently resolved three dimensional structure of iso-1-cytochrome c [(1987) J. Mol. Biol. 199, 295-314], and by comparison with the phylogenetic series of eukaryotic cytochromes c. Residue replacements that abolish iso-1-cytochrome c function appear to do so by affecting either heme attachment or protein stability; no replacements that abolish electron transfer function without affecting protein structure were uncovered. Most nonfunctional forms retained at least partial covalent attachment to the heme moiety; heme attachment was abolished only by replacements of Cys19 and Cys22, which are required for thioether linkage, and His23, a heme ligand. Replacements were uncovered that retain function at varying levels, including replacements at evolutionarily conserved positions, some of which were structurally and functionally indistinguishable from wild type iso-1-cytochrome c.  相似文献   

13.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

14.
The mRNA sequence and structures that modify and are required for translation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae were investigated with sets of CYC1 alleles having alterations in the 5' leader region. Measurements of levels of CYC1 mRNA and iso-1-cytochrome c in strains having single copies of altered alleles with nested deletions led to the conclusion that there is no specific sequence adjacent to the AUG initiator codon required for efficient translation. However, the nucleotides preceding the AUG initiator codon at positions -1 and -3 slightly modified the efficiency of translation to an order of preference similar to that found in higher cells. In contrast to large effects observed in higher eucaryotes, the magnitude of this AUG context effect in S. cerevisiae was only two- to threefold. Furthermore, introduction of hairpin structures in the vicinity of the AUG initiator codon inhibited translation, with the degree of inhibition related to the stability and proximity of the hairpin. These results with S. cerevisiae and published findings on other organisms suggest that translation in S. cerevisiae is more sensitive to secondary structures than is translation in higher eucaryotes.  相似文献   

15.
Mutants of Yeast Defective in Iso-1-Cytochrome c   总被引:39,自引:14,他引:25       下载免费PDF全文
A medium containing chlorolactate has been devised to enrich for mutants that are unable to utilize lactate for growth, and therefore that may be defective in cytochrome c. Complementation tests of 6,520 chlorolactate-resistant mutants that were obtained spontaneously or induced with UV, ICR-170, or nitrosoimidazolidone resulted in the identification of 195 mutations at the cyc1 locus, which controls the primary structure of iso-1-cytochrome c. These 195 mutants, with 16 cyc1 mutants previously isolated, were examined for total cytochrome c by spectroscopic methods, growth on lactate medium, suppressibility by defined nonsense suppressors, mutational sites by x-ray-induced recombination, ability to revert, and in 86 cases, whether intragenic revertants contain altered iso-1-cytochrome c. Except for the deletion mutant cyc1-1, all of the mutants appeared to contain single-site mutations that could be assigned to at least 35 different sites within the gene. The cyc1 mutants either completely lacked iso-1-cytochrome c or contained iso-1- cytochromes c that were completely or partially nonfunctional. In spite of the fact that the cyc1 mutants obtained by the chlorolactate procedure were selected on the basis of defective function, 68% appeared to completely lack iso-1-cytochrome c. The remaining cyc1 mutants contained below normal amounts of iso-1-cytochromes c. Studies at several incubation temperatures indicated that these nonfunctional iso-1-cytochromes c were thermolabile. It is suggested that the predominant means for abolishing iso-1-cytochrome c by mutations are either through a complete loss, such as produced by chain terminating codons, or impairments through drastic changes of tertiary structure which lead to instability and thermolability.  相似文献   

16.
Fine-structure genetic mapping previously revealed numerous nonfunctional cyc1 mutations having alterations at or near the site corresponding to amino acid position 76 of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. DNA sequencing of the alterations in four of these cyc1 mutations indicated that the normal Pro-76 was replaced by Leu-76. Revertants containing at least partially functional iso-1-cytochromes c were isolated, and the alterations were analyzed by DNA sequencing and protein analysis. Specific activities of the altered iso-1-cytochromes c were estimated in vivo by growth of the strains in lactate medium; compared to normal iso-1-cytochrome c with Pro-76, the following activities were associated with the following replacements: approximately 90% for Val-76, approximately 60% for Thr-76, approximately 30% for Ser-76, approximately 20% for Ile-76, and 0% for Leu-76. In order to develop an understanding of the factors that determine whether or not an altered iso-1-cytochrome c will function, we undertook a theoretical analysis which led to the conclusion that the activity of the proteins was dependent on both short- and long-range interactions. Short-range interactions were estimated from studies on known protein structures which gave the likelihood that various amino acids would be found in a local backbone configuration similar to the native protein; long-range interactions with the rest of the molecule were analyzed by considering the size of the side chain. We believe this approach can be used to analyze a wide variety of mutant proteins.  相似文献   

17.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.  相似文献   

18.
We used a specially constructed strain, cyc1–345, of the yeast Saccharomyces cerevisiae to isolate revertants that initiated translation of iso-1-cytochrome c at various sites along an extended region of the mRNA. Normal amounts of iso-1-cytochrome c occurred when translation initiated at the abnormal sites corresponding to amino acid positions ?3, ?2, 3 and 5, as well as the normal position ?1; 20% of the normal amounts occurred when translation initiated at the abnormal position 9. These results with cyc1–345 revertants indicate that translation of iso-1-cytochrome c can initiate with the normal efficiency at any site within the region spanning 25 nucleotides. Furthermore, because the lower amount of the short iso-1-cytochrome c in the mutant initiating at position 9 may not necessarily reflect an inefficiency of translation, we believe that translation can initiate with normal or near-normal efficiencies at any site within a 37 nucleotide region, and presumably at any site preceding and following that of the normal initiation codon. These results establish that there is no absolute requirement for a particular sequence 5′ to the initiation codon, and are consistent with our previous suggestion that translation starts at the AUG codon closest to the 5′ end of the mRNA.  相似文献   

19.
20.
Cytochromes c from plants and fungi, but not higher animals, contain methylated lysine residues at specific positions, including for example, the trimethylated lysine at position 72 in iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. Testing of 6,144 strains of S. cerevisiae, each overproducing a different open reading frame fused to glutathione S-transferase, previously revealed that YHR109w was associated with an activity that methylated horse cytochrome c. We show here that this open reading frame, denoted Ctm1p, is specifically responsible for trimethylating lysine 72 of iso-1-cytochrome c. Unmethylated forms of cytochrome c but not other proteins or nucleic acids are methylated in vitro by Ctm1p produced in S. cerevisiae or Escherichia coli. Iso-1-cytochrome c purified from a ctm1-Delta strain is not trimethylated in vivo, whereas the K72R mutant form, or the trimethylated Lys-72 form of iso-1-cytochrome c, are not significantly methylated by Ctm1p in vitro. Like apocytochrome c, but in contrast to holocytochrome c, Ctm lp is located in the cytosol, consistent with the view that the natural substrate is apocytochrome c. The ctm1-Delta strain lacking the methyltransferase did not exhibit any growth defect on a variety of media and growth conditions, and the unmethylated iso-1-cytochrome c was produced at the normal level and exhibited the normal activity in vivo. Ctm1p and cytochrome c were coordinately regulated during anaerobic to aerobic transition, a finding consistent with the view that this methyltransferase evolved to act on cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号