首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
Oligonucleotide-directed mutagenesis of the yeast Saccharomyces cerevisiae was used to generate an abnormal iso-1-cytochrome c having an Arg-77 replacement of the normal Lys-77; this Lys-77 residue is evolutionarily conserved in most eukaryotic cytochromes c and is trimethylated in fungal and plant cytochromes c. Examination of strains having a single chromosomal copy of the gene encoding the Arg-77 protein indicated that the altered protein was synthesized at the normal rate and that it had normal or near normal activity in vivo. Examination of enzymatic activities in vitro with cytochrome b2, cytochrome c peroxidase, and cytochrome c oxidase indicated that the altered iso-1-cytochrome c has equal or enhanced catalytic efficiencies. Thus, replacement of the evolutionarily conserved residue Lys-77 produces no or only minor effects both in vivo and in vitro.  相似文献   

2.
3.
Cytochromes c from plants and fungi, but not higher animals, contain methylated lysine residues at specific positions, including for example, the trimethylated lysine at position 72 in iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. Testing of 6,144 strains of S. cerevisiae, each overproducing a different open reading frame fused to glutathione S-transferase, previously revealed that YHR109w was associated with an activity that methylated horse cytochrome c. We show here that this open reading frame, denoted Ctm1p, is specifically responsible for trimethylating lysine 72 of iso-1-cytochrome c. Unmethylated forms of cytochrome c but not other proteins or nucleic acids are methylated in vitro by Ctm1p produced in S. cerevisiae or Escherichia coli. Iso-1-cytochrome c purified from a ctm1-Delta strain is not trimethylated in vivo, whereas the K72R mutant form, or the trimethylated Lys-72 form of iso-1-cytochrome c, are not significantly methylated by Ctm1p in vitro. Like apocytochrome c, but in contrast to holocytochrome c, Ctm lp is located in the cytosol, consistent with the view that the natural substrate is apocytochrome c. The ctm1-Delta strain lacking the methyltransferase did not exhibit any growth defect on a variety of media and growth conditions, and the unmethylated iso-1-cytochrome c was produced at the normal level and exhibited the normal activity in vivo. Ctm1p and cytochrome c were coordinately regulated during anaerobic to aerobic transition, a finding consistent with the view that this methyltransferase evolved to act on cytochrome c.  相似文献   

4.
5.
Summary This study concerns the chromosomal genes controlling the synthesis of cytochrome c in yeast. In the wild type there are two molecular species of cytochrome c : iso-1 (major from) and iso-2 (minor form) which differ in many positions of their amino-acid sequence. A mutation, CY1cy1-1, in the structural gene for iso-1, leads to iso-1 deficiency, while retaining a normal albeit small amount of iso-2-cytochrome c.The cyI-1 mutant does not grow on DL-lactate as sole carbon source, while the wild type does. This property was used for selecting cytochrome c rich revertants (CYT) from cytochrome c deficient strains cy1-1; ca 200 revertants were isolated after extensive nitrous acid mutagenesis from a haploid cy1-1 strain or from a diploid cy1-1/cy1-1 strain and ca 30 of them were analyzed genetically and biochemically. The cytochrome c of seven (CYT) revertants was extracted and characterized; none of them contained iso-1-cytochrome c, but all contained large amount of iso-2-cytochrome csufficient to compensate for the deficiency. It was concluded that none of the revertants resulted from back mutation of cy1-1 and that the cy1-1 mutation is a deletion or some other irreversible aberration. These conclusions were corroborated by genetic analysis. It was shown that every reversion is due to a chromosomal mutation segregating as a single gene. Five unlinked gene loci, CY2A, CY2B, CY2C, CY2D, CY2E, were uncovered in this way. None of them were linked to the CY1 locus. Revertants selected in the diploid strain were dominant or semi-dominant while those selected in the haploid strain were recessive. To the first class belong alleles at loci CY2A, CY2B, CY2C, while to the latter belong alleles at loci CY2D and CY2E.Five unlinked loci are implicated in iso-2-cytochrome c synthesis. Mutations selected at these loci act as suppressors of cytochrome c deficiency caused by a deletion of the CY1 locus. In fact the muations do not restore the synthesis of the deficient protein (iso-1-cytochrome c), but increase the synthesis of an another protein, structurally alike (iso-2-cytochrome c), and having very similar if not identical physiological activity. We propose the term of compensator genes to define this type of mutations. We discuss some possible mechanisms to explain the rarity of compensator mutations and the hypothesis that the locus CY2A could correspond not only to the regulatory gene for iso-2-cytochrome c but also to the structural one.  相似文献   

6.
Five chromosomal genes, CYPI to CYP5 involved in the regulation of the synthesis of iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2 are described. The function of these genes was studied either by varying the proportion of the mutated and wild type alleles in the cell vy varing the growth conditions, or else by transforming the mutants into sigma-cytoplasmic petites. We have shown a network of genetic interactions which regulate the synthesis of three structurally different proteins : iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2, by two unlinked genes : CYC1 and CYP1, one of which (CYC1) is the structural gene by iso-1-cytochrome c. Within this network the interactions are proportional to the gene dosage and are either antagonistic or synergistic depending on the allele combination and the protein studied. The mutated alleles cyp1 stimulate the synthesis of iso-2-cytochrome c, inhibit the synthesis of iso-1-cytochrome c, while the cytochrome b2 synthesis is also inhibited but by a combination of cyp1 mutated alleles CYC1 wild type allele. Other loci, CYP2, CYP3, CYP4 and CYP5 were also studied in various allelic combinations. They show some interactions between them or with CYC1 locus but these interactions are different and less pronounced than those involving loci CYP1 and CYC1.  相似文献   

7.
The four mutant genes, cyc2, cyc3, cyc8 and cyc9, that affect the levels of the two iso-cytochromes c in the yeast Saccharomyces cerevisiae have been characterized and mapped. Both cyc2 and cyc3 lower the amount of iso-1-cytochrome c and iso-2-cytochrome c; whereas, cyc8 and cyc9 increase the amount of iso-2-cytochrome c. The cyc2, cyc3, cyc8 and cyc9 genes are located, respectively, on chromosomes XV, I, II and III, and are, therefore, unlinked to each other and unlinked to CYC1, the structural gene of iso-1-cytochrome c and to CYC7, the structural gene of iso-2-cytochrome c. While some cyc3 mutants are completely or almost completely deficient in cyotchromes c, none of the cyc2 mutants contained less than 10% of parental level of cytochrome c even though over one-half of the mutants contain UAA or UAG nonsense mutations. Thus, it appears as if a complete block of the cyc2 gene product still allows the formation of a residual fraction of cytochrome c. The cyc2 and cyc3 mutant genes cause deficiencies even in the presence of CYC7, cyc8 and cyc9, which normally cause overproduction of iso-2-cytochrome c. We suggest that cyc2 and cyc3 may be involved with the regulation or maturation of the iso-cytochromes c. In addition to having high levels of iso-2-cytochromes c, the cyc8 and cyc9 mutants are associated with flocculent cells and other abnormal phenotypes. The cyc9 mutant was shown to be allelic with the tup1 mutant and to share its properties, which include the ability to utilize exogenous dTMP, a characteristic flocculent morphology, the lack of sporulation of homozygous diploids and low frequency of mating and abnormally shaped cells of alpha strains. The diverse abnormalities suggest that cyc8 and cyc9 are not simple regulatory mutants controlling iso-2-cytochrome c.  相似文献   

8.
The structural and functional consequences of replacing omega-loop A (residues 18-32) in yeast iso-1-cytochrome c with the corresponding loop of Rhodospirillum rubrum cytochrome c2 have been examined. The three-dimensional structure of this loop replacement mutant RepA2 cytochrome c, and a second mutant RepA2(Val 20) cytochrome c in which residue 20 was back substituted to valine, were determined using X-ray diffraction techniques. A change in the molecular packing is evident in the RepA2 mutant protein, which has a phenylalanine at position 20, a residue considerably larger than the valine found in wild-type yeast iso-1-cytochrome c. The side chain of Phe 20 is redirected toward the molecular surface, altering the packing of this region of omega-loop A with the hydrophobic core of the protein. In the RepA2(Val 20) structure, omega-loop A contains a valine at position 20, which restores the original wild-type packing arrangement of the hydrophobic core. Also, as a result of omega-loop A replacement, residue 26 is changed from a histidine to asparagine, which results in displacements of the main-chain atoms near residue 44 to which residue 26 is hydrogen bonded. In vivo studies of the growth rate of the mutant strains on nonfermentable media indicate that the RepA2(Val 20) cytochrome c behaves much like the wild-type yeast iso-1 protein, whereas the stability and function of the RepA2 cytochrome c showed a temperature dependence. The midpoint reduction potential measured by cyclic voltammetry of the RepA2 mutant is 271 mV at 25 degrees C. This is 19 mV less than the wild-type and RepA2(Val 20) proteins (290 mV) and may result from disruption of the hydrophobic packing in the heme pocket and increased mobility of omega-loop A in RepA2 cytochrome c. The temperature dependence of the reduction potential is also greatly enhanced in the RepA2 protein.  相似文献   

9.
10.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.  相似文献   

11.
The gene CYC2 from the yeast Saccharomyces cerevisiae was previously shown to affect levels of mitochondrial cytochrome c by acting at a posttranslational step in cytochrome c biosynthesis. We report here the cloning and identification of the CYC2 gene product as a protein involved in import of cytochrome c into mitochondria. CYC2 encodes a 168-amino-acid open reading frame with at least two potential transmembrane segments. Antibodies against a synthetic peptide corresponding to the carboxyl terminus of the predicted sequence were raised. These antibodies recognize multiple bands on immunoblots of mitochondrial extracts. The intensities of these bands vary according to the gene dosage of CYC2 in various isogenic strains. Immunoblotting of subcellular fractions suggests that the CYC2 gene product is a mitochondrial protein. Deletion of CYC2 leads to accumulation of apocytochrome c in the cytoplasm. However, strains with deletions of this gene still import low levels of cytochrome c into mitochondria. The effects of cyc2 mutations are more pronounced in rho- strains than in rho+ strains, even though rho- strains that are CYC2+ contain normal levels of holocytochrome c. cyc2 mutations affect levels of iso-1-cytochrome c more than they do levels of iso-2-cytochrome c, apparently because of the greater susceptibility of apo-iso-1-cytochrome c to degradation in the cytoplasm. We propose that CYC2 encodes a factor that increases the efficiency of cytochrome c import into mitochondria.  相似文献   

12.
13.
The CYC7-H2 mutation in the yeast Saccharomyces cerevisiae was caused by insertion of a Ty1 transposable element in front of the iso-2-cytochrome c structural gene, CYC7. The Ty1 insertion places iso-2-cytochrome c production under control of regulatory signals that are normally required for mating functions in yeast cells. We have investigated the regions of the Ty1 insertion that are responsible for the aberrant production of iso-2-cytochrome c in the CYC7-H2 mutant. Five alterations of the CYC7-H2 gene were obtained by specific restriction endonuclease cleavage of the cloned DNA and ligation of appropriate fragments. The CYC7+, CYC7-H2, and modified CYC7-H2 genes were each inserted into the yeast vector YIp5 and used to transform a cytochrome c-deficient yeast strain. Expression and regulation of each allele integrated at the CYC7 locus have been compared in vivo by determination of the amount of iso-2-cytochrome c produced. These results show that distal regions of the Ty1 element are not essential for the CYC7-H2 overproducing phenotype. In contrast, alterations in the vicinity of the proximal Ty1 junction abolish the CYC7-H2 expression and give rise to different phenotypes.  相似文献   

14.
Saccharomyces cerevisiae iso-1-cytochrome c was conjugated with ubiquitin (Ub) in vitro in a rabbit reticulocyte extract (Fraction II). By N-terminal protein sequencing, it was found for both the mono- and diubiquitinated products that the major Ub attachment site is on Lys4 (residue 9) of the cytochrome c. Thus, the residue ubiquitinated in iso-1-cytochrome c is identical with that previously determined for the yeast iso-2 form (Sokolik, C. W., and Cohen, R. E. (1991) J. Biol. Chem. 266, 9100-9107). For both cytochromes c, the proportions of diubiquitinated and higher order conjugates are drastically reduced when Ub is replaced with a Lys48----Arg variant, suggesting that the Ub-Ub moieties are linked predominantly through Lys48. Despite close similarities in structure and ubiquitination sites, conjugation to iso-2-cytochrome c is approximately 5-fold faster than for the iso-1 form; vertebrate cytochromes c are even poorer substrates, being ubiquitinated at only approximately 5% of the rate of the iso-2 protein. Comparison of several cytochrome c variants excludes alpha-N-acetylation or the identity of the N-terminal amino acid as the important recognition determinants in these reactions. The results, which include the finding that ferro and ferri-iso-2-cytochromes c are ubiquitinated equally, also are evidence against a simple correlation between ubiquitination efficiency and thermodynamic stability. Rather, the presence of a pair of lysines (Lys4-Lys5) within the relatively unstructured N-terminal extension of the yeast cytochromes c may be responsible for their preferential ubiquitination.  相似文献   

15.
Characterization of yeast iso-1-cytochrome c mRNA   总被引:7,自引:0,他引:7  
The iso-1-cytochrome c mRNA has been identified by hybridization of a 32P probe prepared from a plasmid containing the iso-1-cytochrome c gene to RNA size-fractionated on agarose gels and transferred to paper. A hybridization band was visible with RNA prepared from wild type cells, but not with RNA prepared from an iso-1-cytochrome c deletion mutant. RNA prepared from cells containing a nonsense mutation in the iso-1-cytochrome c gene showed reduced levels of hybridization. The RNA that hybridized to the probe was 700 +/- 50 nucleotides in length and was polyadenylated. The cellular levels of this RNA were repressed by glucose, and this repression was achieved within 5 min after glucose addition to a derepressed culture. No precursors of this RNA were detected in wild type cells or in an RNA1 mutant, temperature-sensitive for RNA metabolism. The length of the 3' noncoding region of this RNA was determined to be 200 +/- 25 nucleotides (excluding the poly(A) tail) and the 5' noncoding region was estimated to be about 120 nucleotides in length.  相似文献   

16.
A molecular replacement approach, augmented with the results of predictive modeling procedures, solvent accessibility studies, packing analyses and translational coefficient searches, has been used to elucidate the 2.8 A (1 A = 0.1 nm) resolution structure of yeast iso-1-cytochrome c. An examination of the polypeptide chain folding of this protein shows it to have unique conformations in three regions, upon comparison with the structures of other eukaryotic cytochromes c. These include: residues -5 to +1 at the N-terminal end of the polypeptide chain, which are in an extended conformation and project in large part off the surface of the protein; residues 19 to 26, which form a surface beta-loop on the His18 ligand side of the central heme group; and, the C-terminal end of the helical segment composed of residues 49 to 56, which serves to form a part of the heme pocket. Structural studies also show that the highly reactive sulfhydryl group of Cys102 is buried within a hydrophobic region in the monomer form of yeast iso-1-cytochrome c. Dimerization of yeast iso-1-cytochrome c through disulfide bond formation between two such residues would require a substantial conformational change in the C-terminal helix of this protein. Another unique structural feature, the trimethylated side-chain of Lys72, is located on the surface of yeast iso-1-cytochrome c near the solvent-exposed edge of the bound heme prosthetic group. On the basis of the results of these and other structural studies, an analysis of the spatial conservation of structural features in the heme pocket of eukaryotic cytochromes c has been conducted. It was found that the residues involved could be divided into three general classes. The current structural analyses and additional modeling studies have also been used to explain the altered functional properties observed for mutant yeast iso-1-cytochrome c proteins.  相似文献   

17.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied. 2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the alpha peaks of b-type cytochrome (s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two alpha peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochdrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm. 3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.  相似文献   

18.
A phagemid (pING4) carrying the yeast iso-1-cytochrome c gene was constructed which bears all the elements necessary for replication in yeast and bacteria and may be converted into a single-stranded form of DNA for site-directed mutagenesis and nucleotide sequencing. The recombinant vector was used to create a complete set of 19 amino acid changes at position 82, a phylogenetically conserved phenylalanine residue in mitochondrial cytochrome c. All the different forms of cytochrome c were functional in vivo, based upon their ability to support respiration when the mutant proteins were expressed in a yeast strain (otherwise devoid of cytochrome c) grown on non-fermentable carbon sources, with only the strain containing the Cys82 variant having a substantially decreased growth rate. These results are interpreted in terms of the available structural and functional information previously reported on a subset of cytochrome c proteins with mutations at position 82.  相似文献   

19.
As part of a study of protein folding and stability, the three-dimensional structures of yeast iso-2-cytochrome c and a composite protein (B-2036) composed of primary sequences of both iso-1 and iso-2-cytochromes c have been solved to 1.9 A and 1.95 A resolutions, respectively, using X-ray diffraction techniques. The sequences of iso-1 and iso-2-cytochrome c share approximately 84% identity and the B-2036 composite protein has residues 15 to 63 from iso-2-cytochrome c with the rest being derived form the iso-1 protein. Comparison of these structures reveals that amino acid substitutions result in alterations in the details of intramolecular interactions. Specifically, the substitution Leu98Met results in the filling of an internal cavity present in iso-1-cytochrome c. Further substitutions of Val20Ile and Cys102Ala alter the packing of secondary structure elements in the iso-2 protein. Blending the isozymic amino acid sequences in this latter area results in the expansion of the volume of an internal cavity in the B-2036 structure to relieve a steric clash between Ile20 and Cys102. Modification of hydrogen bonding and protein packing without disrupting the protein fold is illustrated by the His26Asn and Asn63Ser substitutions between iso-1 and iso-2-cytochromes c. Alternatively, a change in main-chain fold is observed at Gly37 apparently due to a remote amino acid substitution. Further structural changes occur at Phe82 and the amino terminus where a four residue extension is present in yeast iso-2-cytochrome c. An additional comparison with all other eukaryotic cytochrome c structures determined to date is presented, along with an analysis of conserved water molecules. Also determined are the midpoint reduction potentials of iso-2 and B-2036 cytochromes c using direct electrochemistry. The values obtained are 286 and 288 mV, respectively, indicating that the amino acid substitutions present have had only a small impact on the heme reduction potential in comparison to iso-1-cytochrome c, which has a reduction potential of 290 mV.  相似文献   

20.
T B White  P B Berget  B T Nall 《Biochemistry》1987,26(14):4358-4366
Using oligonucleotide-directed mutagenesis, we have produced a mutant form of iso-2-cytochrome c of yeast in which threonine (Thr-71) replaces a conserved proline residue (Pro-71) located between two short alpha-helical segments in the native protein. Optical spectroscopy indicates that, at pH 7.2, Thr-71 iso-2-cytochrome c folds to a nonnative conformation possibly related to the alkaline form of the native protein. On titration to pH 5.2, Thr-71 iso-2-cytochrome c regains many of the optical properties of the normal protein. We have shown that the proline residue at position 71 has no effect on the kinetics of fluorescence-detected slow refolding. However, between pH 5 and pH 7.2 the amplitude for absorbance-detected slow folding is strongly pH dependent in the mutant protein but is largely independent of pH in the normal protein. We believe this to be due to the folding of Thr-71 iso-2-cytochrome c to a nonnative conformation at pH 7.2 that does not require the slow, absorbance-detected conformational changes observed in folding to the more native-like state at pH 5-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号