首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
1. Phosphorus (P) release from bottom sediments is an important source of nutrient enrichment in many lakes in sedimentary basins, such as those in western Canada. On the Boreal Plain, sediment P release is particularly strong during periods of seasonal anoxia.
2. In this study, the effects of reduction–oxidation (redox)-sensitive and -insensitive chemicals on P release were examined in sediment cores collected from three eutrophic lakes.
3. Contrary to expectations, redox-sensitive treatments were no more effective at lowering total phosphorus (TP) in sediment cores than some redox-insensitive treatments. Redox-sensitive treatments with FeCl3 and FeCl3 + O2 reduced TP to 8 and 6%, respectively, of reference concentrations, whereas redox-insensitive treatments with alum or lime + alum reduced TP to 14% of reference concentrations. Lime and O2 treatments reduced TP concentrations to 35 and 52% of reference concentrations, respectively.
4. The fraction of P that adsorbed and co-precipitated with iron and aluminium in the sediment cores was low (non-apatite phosphorus fractions < 5%), suggesting that P release was controlled by apatite solubility and bacterial metabolism.  相似文献   

2.
1. The impact of whole-lake lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) addition on plankton communities was evaluated in eutrophic hardwater lakes on the North American Boreal Plain.
2. Two lakes received a single treatment of lime (Ca(OH)2 at 74 or 107 mg L–1), two lakes received multiple treatments with Ca(OH)2 and/or CaCO3 (5–78 mg L–1), and four lakes were untreated and served as reference systems.
3. Over the long-term (> 1 year), phytoplankton biomass was reduced in multiple-dose lakes, but not in single-dose lakes. Cyanobacteria typically dominated the algal community in the years before, during and after lime treatment in both single- and multiple-dose lakes.
4. In the single-dose lakes, randomized intervention analysis showed no significant change in the biomass of zooplankton after lime addition.  相似文献   

3.
SUMMARY. Comparisons of pre- and post-settlement diatom assemblages from the sediment of twenty-five Minnesota lakes reveals that Stephanodiscus hantzschii percentages are more consistent indicators of human disturbance than the Araphidineae/Centrales (A/C) index. In a set of eighty surface sediment samples from lakes whose water chemistry is known, S. hantzschii , a centric diatom, is abundant as a microfossil in lakes with total phosphorus > 15 μg I−1 and alkalinity > 1.5 m-equiv. I−1. High Araphidineae/Centrales indices are characteristic of lakes with only moderate total phosphorus levels and very low alkalinities.  相似文献   

4.
1. Two hardwater eutrophic lakes of central Alberta were subjected to single doses of Ca(OH)2 (74 or 107 mg L–1). The effects of lime treatment on phosphorus (P) precipitation, sediment P release, and macrophyte biomass were assessed for up to 2 years.
2. In both lakes, sediment P release was reduced to 16 and 27%, respectively, of pre-treatment values by the first winter following treatment. However, sediment P release returned to pre-treatment values during the following year.
3. In contrast to these short-term effects, macrophyte biomass decreased by as much as 80% after lime application and remained there for at least 2 years.
4. Our results indicate that a single dose of Ca(OH)2 may give short-term (< 1 year) control of P and long-term control (> 1 year) of macrophytes in hardwater eutrophic lakes of Alberta.  相似文献   

5.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

6.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

7.
The distribution of Peridinium willei and P. volzii was studied in Danish lakes. Both species were confined to lakes with concentrations of Total P < 0.15 mg 1-1, with the majority of occurrences at Total P concentration between 0.020–0.040 mg 1-1 and concentrations of PO4 P between detection limit and 0.040 mg 1-1. The occurrence of the species in relation to inorganic N compounds (NH4 N and NO2+ NO3 N) was significantly broader for P. willei than for P. volzii: P. willei had an almost even distribution within a wide range of NH4 N, whereas P. volzii mainly occurred between 0.001 and 0.10 NH4 N 1-1. P. willei had an almost even distribution at values beween 0.005 and 0.42 mg NO2+ NO3 N 1-1, whereas P. volzii mainly occurred below 0.050 mg NO2+ NO3 N 11. P. willei was found at pH values between 4.2 and 8.5, whereas P. volzii was confined to lakes with a slightly basic pH. The study confirmed the broad limits of P. willei and the much more narrow limits of P. volzii in relation to seasonal occurrence and pH, as well as an affinity of the former to ponds and lakes with a rich bottom vegetation. The study also showed, however, that the species were not as widespread and common in recent Danish lake phytoplankton as generally stated by previous authors. The use of different ecological factors to give weight to species separation is discussed. The inclusion of P. volzii in P. willei proposed by Popovsky & Phiester is not supported by the present study, as the two taxa appear to have different ecological tolerances.  相似文献   

8.
1. The affinity of photosynthesis for CO2 is calculated here as the initial slope of net-photosynthetic rate against concentration of CO2. The affinity for CO2 for pairs of freshwater macrophytes with similar leaf morphology but able or unable to use HCO3 as a carbon source was compared.
2. Species restricted to CO2 had a higher affinity for CO2 than species that were also able to use HCO3 when rates were expressed on the basis of area, dry mass and content of chlorophyll a .
3. Published values for the affinity for CO2 and the concentration of CO2 which half-saturated rate of photosynthesis were compiled and compared. Despite a large range of values, affinity for CO2 was greater for species restricted to CO2 than for those also able to use HCO3 and statistically different when the slope was expressed on the basis of dry mass and chlorophyll a content.
4. The difference in affinity is consistent with predicted benefits of a high permeability to CO2 for species relying on passive diffusion of CO2 and a lower permeability for species able to use HCO3 in order to reduce efflux of CO2 from a high internal concentration generated by active transport.
5. The implications of the different affinities are discussed in terms of species distribution.  相似文献   

9.
Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near‐synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment δ15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down‐core species changes are corroborated by a year‐long sediment trap experiment from one of the lakes, which reveals high frequencies of these two taxa during autumn and winter months, the interval of peak annual limnetic []. Although all lakes record recent changes, the amplitude of stratigraphic shifts is greater in lakes east of the Continental Divide relative to those on the western slope, implying that most nitrogen enrichment originates from urban, industrial and agricultural sources east of the Rocky Mountains. Deviations from natural trajectories of lake ontogeny are illustrated by canonical correspondence analysis, which constrains the diatom record as a response to changes in nitrogen biogeochemistry. These results indicate that modest rates of anthropogenic nitrogen deposition are fully capable of inducing directional biological and biogeochemical shifts in relatively pristine ecosystems.  相似文献   

10.
ABSTRACT. Loxodes reached peak abundance close to the oxic-anoxic boundary (O2 5% atm) in two lakes, in test tube cultures, and in glass chambers with horizontal O2 gradients. Vertical profiles of CO2, pH, sulfide, and Fe2+ in a lake were not closely related to Loxodes abundance. In a laboratory experiment, Loxodes followed a retreating source of O2 and was repelled by a high pO2. This behavior was sustained when cells simultaneously swam up or down gradients of both CO2 and pH. Aggregation of cells was abolished by KCN (10-4-10-6 M). Sodium azide (10-1-10-4 M) had no effect and 2,4-DNP sharpened the aggregation. Rotenone, Antimycin A, and HOQNO had no obvious effect. Cytochrome oxidase is probably the oxygen receptor. Loxodes striatus contained low activities of superoxide dismutase and catalase. Extracellular production of superoxide (O-2) and hydrogen peroxide (H2O2) were probably not responsible for the exclusion of Loxodes from water with a high pO2. Continuous exposure of Loxodes to oxygen at normal atmospheric pressure at 10°C led to 50% mortality in 10 days. Cells left free to swim in an oxygen gradient doubled their number in the same period. Light exacerbated the toxic effects of O2. Behavioral responses to the dissolved oxygen tension probably controlled the spatial distribution of Loxodes.  相似文献   

11.
Abstract A reaction diffusion model was used to simulate the mineralization processes in an Arctic sediment. The simulation and the actual sediment were compared in relation to profiles of O2, NO3 and NH4+. The site of particulate organic matter (POM) degradation was the single most important factor in fitting the simulation profiles to those of the sediment. It was deduced that most POM degradation occurred close to the sediment surface. When a reasonably good simulation had been obtained, the sensitivity of the model to changes in other parameters was investigated. Increases in POM degradation in the upper sediment resulted in increases in concentration of NH4+ and NO3, but further increases in POM degradation created anoxic conditions below 3 mm, resulting in decreases in NO3 concentrations. The model was relatively intensive to changes in POM degradation in the lower sediment layers; increases led to more anoxic conditions and to less NO3. Increases in the C/N ratio of the POM in the lower sediment layers had little effect; increases in C/N in the upper layers led to a decrease in NH4+ and NO3. The model was sensitive to changes in the first order rate constant for nitrification, but not for denitrification. Decreases in the K m for O2 of the nitrifying bacteria had no effect on the profiles.  相似文献   

12.
SUMMARY. 1. Sephadex gel filtration of filtered water from small, Finnish forest lakes demonstrated abiotic movement of 33P from added PO4 to two higher molecular weight fractions. This movement was most pronounced in waters with high humic content which also had high iron content. The two fractions which took up 13P had nominal molecular weights of > 100,000 and 10,000-20,000.
2. An equilibrium existed between free PO4 and the two fractions. However, one fraction, at least, appeared to exist in two phases, with one phase in rapid equilibrium with free PO4 but the other in only slow equilibrium.
3. Additions of ferric iron up to 1 mg Fe l−1 to the filtered lake water stimulated movement from free PO4, provided high concentrations of humic materials were present. In the absence of humic materials even 0.1 mg Fe 1−1 would precipitate all added 33PO4.
4. The high molecular weight P was only partially reactive with standard molybdate reagents. Exposure of the high molecular weight P to sunlight caused a small release of PO4 under the experimental conditions employed.
5. Possible implications for biological phosphorus demand of such sequestration of free PO4 by humic materials in combination with iron are discussed.  相似文献   

13.
1. Sediment resuspension dynamics were investigated in relation to changes in water column nutrients (TP, TN, PO4-P, NO3-N and NH4-N), chlorophyll a and phaeopigment in seven shallow ( Z m < 1.5 m) lakes in South Island, New Zealand, ranging in area from 0.1 to 180 km2.
2. Benthic shear stress, calculated from wind speed, effective fetch and depth, was a considerably better predictor of nutrient and pigment concentrations than wind speed.
3. For TP, TN, chlorophyll a and phaeopigment, sixteen of the possible twenty-eight linear correlations with benthic shear stress were significant at P < 0.05, with 16–87% of the variation being explained by shear stress.
4. Wind decreased the ratios of TN : TP, with ratios exponentially approaching those of the sediments as shear stress increased in four of the lakes.
5. Relationships of dissolved inorganic nutrients to shear stress were considerably weaker than those for total nutrients and showed no consistent trend over the seven lakes.
6. Estimated annual mean TP inclusive of resuspension was over four times higher than that derived from measured calm samples in two lakes.
7. The number of nutrient and pigment parameters that were significantly correlated with shear stress and the strengths of the relationships varied widely from lake to lake. We could establish no simple relationships between these effects and any single characteristic of the lake, sediment, or water.
8. A function is developed to predict the rate of entrainment of TN and TP in response to an applied shear stress, where the independent variables are sediment nutrient content and particle size, and the macrophyte density in the lake.  相似文献   

14.
Seeds of Kalanchoë blossfeldiana Poelln. cv. Feucrblüte, incubated on gibberellic acid, become very light-sensitive through a synergism between the far-red absorbing form of phytochrome and the growth substance, which results in high physiological activity of short far-red (FR) exposures. On 2 × 10-3 M gibberellic acid (GA3), one saturating FR pulse is somewhat more effective than one saturating red light (R) irradiation. Fluence-response curves for R and FR confirm this observation. At lower GA3 concentrations, this difference disappears and the effects of one saturating R and FR pulse decrease in an identical way with the GA3 concentration. When two saturating irradiations, separated by 24 h are given, the effect of FR falls off faster than that of R at low GA3 concentrations. Consequently, the second irradiation must have a different impact in comparison with the first one. Of the other growth substances tested, only a mixture of gibberellins A4 and A7 had an analogous, still more pronounced effect than GA3. Abscisic acid (ABA) inhibits the phytochrome-mediated germination of Kalanchoë , both in the absence and presence of GA3. An antagonism between ABA and GA3 was demonstrated.  相似文献   

15.
Inorganic carbon limitation of photosynthesis in lake phytoplankton   总被引:5,自引:0,他引:5  
1. Inorganic carbon availability influences species composition of phytoplankton in acidic and highly alkaline lakes, whereas the overall influence on community photosynthesis and growth is subject to debate.
2. The influence of total dissolved inorganic carbon (DIC) and free CO2 on community photosynthesis was studied in six Danish lakes during the summer of 1995. The lakes were selected to ensure a wide range of chlorophyll a concentrations (1–120 μg l–1), pH (5.6–9.6) and DIC concentration (0.02–2.5 m m ). Photosynthesis experiments were performed using the 14C technique in CO2-manipulated water samples, either by changing the pH or by adding/removing CO2.
3. Lake waters were naturally CO2 supersaturated during most of the experimental period and inorganic carbon limitation of photosynthetic rates did not occur under ambient conditions. However, photosynthesis by phytoplankton in lakes with low and intermediate DIC concentrations was seriously restricted when CO2 concentrations declined. Similarly, photosynthesis was limited by low CO2 concentrations during phytoplankton blooms in the hardwater alkaline lakes.  相似文献   

16.
Abstract: Despite a high degree of sequence homology, the dopamine D2 and D3 receptors have substantially different second messenger coupling properties. We have used chimeric D2/D3 receptors to investigate the contribution of the intracellular loops to the signaling properties of these receptors. In HEK 293 cells, D2 receptors inhibit prostaglandin E1-stimulated cyclic AMP levels by >90%, whereas D3 receptors inhibit cyclic AMP accumulation by only 20%. In chimeras that have the second or third intracellular loop, or both loops simultaneously, switched between the D2 and D3 receptors, the maximal inhibition of adenylyl cyclase is 60–90%. In addition, the potency of quinpirole to inhibit adenylyl cyclase activity at some of the chimeras is altered compared with the wild-type receptors. It appears that the intracellular loops of the D3 receptor are capable of interacting with G proteins, as when these loops are expressed in the D2 receptor, the chimeras inhibit adenylyl cyclase similarly to the wild-type D2 receptor. Our data suggest that the overall conformation of the D3 receptor may be such that it interacts with G proteins only weakly, but when the intracellular loops are expressed in another context or the D3 receptor structure is altered by the introduction of D2 receptor sequence, this constraint may be lifted.  相似文献   

17.
Abstract In the profundal sediment ot Lake Constance (143 m depth) the temperature is constant at 4 °C. Despite the constant temperature, CH4 concentrations changed with season between about 120 μM in winter and about 750 μM in summer, measured down to 30 cm depth. The acetate concentration profiles also varied between seasons. In summer, acetate concentration reached a maximum at about 100 μM in 2 or 4 cm depth. In winter, maximal concentrations of about 5 μM were observed over the entire depth. Input of organic material in late spring may be the reason for the seasonal change of both compounds. To simulate such a sedimentation event, intact sediment cores were covered with suspensions of Porphyridium aerugenium or Synechococcus sp. The addition of the phytoplankton material resulted in a drastic increase of acetate concentrations with a maximum at 2 cm depth, similar to in situ acetate concentrations measured in summer. The same applies for CH4 for which increased concentrations were observed down to 6 cm depth. H2 concentrations, on the other hand, showed no distinct increase. Treatment of intact sediment cores with 14C-labeled Synechococcus cells resulted in the formation of 14C-acetate, 14CH4 and 14CO2. Maximum concentrations of 14CH4 were found at 4 cm depth, i.e. just above the depth to which 14C-acetate penetrated. The results show that phytoplankton blooms may cause a seasonal variation of acetate and CH4 in profundal sediments of deep lakes despite the constant low temperature. They also indicate that acetate is the dominant substrate for methanogenic bacteria in the profundal sediments of Lake Constance.  相似文献   

18.
1. Phosphorus (P) uptake by macrophytes and epiphytes from the LaPlatte River (VT) was examined in the laboratory by adding 32PO4‐P to recirculating stream microcosms.
2. Water, plugs of sediment and plants were removed from the river and placed into the microcosms. 32PO4‐P was then added either to the water or the sediment, and its incorporation into plants and epiphytes was monitored over 3 days. Uptake was examined at both ambient (5 μg L–1) and increased (50 μg L–1) soluble reactive phosphorus (SRP) concentrations. A computer program was developed to fit curves to the radiotracer data and calculate rate constants for the simultaneous transfer of 32P among compartments.
3. Both macrophytes and epiphytes removed P from the water, but epiphyte uptake of P was more rapid. Phosphate enrichment stimulated P uptake by both macrophytes and epiphytes. Macrophytes also obtained P from the sediment. The relative contribution of P to macrophytes from the water vs. that from the sediment appeared to vary with SRP in the overlying water. Accurate estimates of rates of P uptake from sediments by macrophytes were difficult to obtain however, due to very low and highly variable unit rate constants for P uptake and uncertainty about the magnitude of the phosphate pool available for uptake.
4. SRP concentrations were greater in the overlying water than in the sediment pore water of stream microcosms in the present study. Numerous reports in the literature have suggested that this condition favours uptake by macrophyte stems and leaves rather than by roots.
5. Phosphate uptake from the water by macrophytes in shallow streams may be more common than for macrophytes in lakes.  相似文献   

19.
1. An oligotrophic arctic lake was fertilised with inorganic nitrogen and phosphorus as (NH4)2 NO3 and H3PO4 for five summers. The loading rate was 1.7–2.5 mmol N m–2 day–1 and 0.136–0.20 mmol P m–2 day–1 which is two to three times the annual loading of lakes in the area. The heterotrophic microzooplankton community was enumerated during the experiment as well as 1 year pre- and post-treatment.
2. The structure of the microplankton community changed from a nutrient limited system, dominated by oligotrich protozoans and small-particle feeding rotifers, to a system dominated by a succession of peritrich protozoans and predatory rotifers. These peritrich protozoans and predatory rotifers were not present prior to fertilisation and never constituted more than a small fraction of the biomass in other lakes at the research site. The average biomass of the rotifers and protozoans was more than seven and a half times larger by the end of fertilisation than it was initially.
3. Because of the increases in numbers of individuals in these new taxa, the structure of the microbial food web changed. When fertilisation stopped, most parameters returned to prefertilisation levels within 1 year.  相似文献   

20.
1. Stable isotopes of carbon are useful for differentiating between freshwater food chains based on planktonic algae or benthic algae, but are reported to be of limited use for identifying food chains based on sedimentary detritus. Because data from marine systems suggest that stable isotopes of sulphur (δ34S values) have potential in this regard, we tested their utility in freshwater lakes.
2. We found that sulphate in the water column of four boreal lakes was enriched in 34S compared to the sulphur in bulk sediments from these lakes. Furthermore, within a given lake, insects known to feed on sediment (directly or via predation) had δ34S values similar to those of sediment, whereas planktonic and benthic invertebrates known to feed on suspended particles had δ34S values similar to those of sulphate in the water column.
3. Using the stable S isotope values of invertebrates that obtain their S from either the sediment or the water column as end members in a two-source mixing model, we show that two fish species obtain their food from both planktonic and sedimentary sources. Furthermore, model results suggest that, as expected, the more benthic-feeding fish species obtains more of its S from the sediment compartment than does the species that feeds in the water-column.
4. Our results suggest that measurements of stable sulphur isotopes provide a means of distinguishing between members of food chains that are based in the water column from those based on sedimentary detritus. As such, they would be a useful complement to stable C isotopes that are used to distinguish between food chains based on planktonic or benthic algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号