首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gossypium species represent a vast resource of genetic multiplicity for the improvement of cultivated cotton. To determine genetic diversity and relationships within a diverse collection of Gossypium, we employed 120 SSR primers on 20 diploid species representing seven basic genome groups of the genus Gossypium, five AD allotetraploid cotton accessions while T. populnea served as an outgroup species. Out of 120 SSR primers, 49 pairs are polymorphic, which produced a total of 99 distinct alleles with an average of 2.0 alleles per primer pair. A total of 1139 major SSR bands were observed. Genetic similarities among all the diploid species ranged from 0.582 (between G. herbaceum and G. trilobum) up to 0.969 (between G. arboreum and G. herbaceum). Phylogenetic trees based on genetic similarities were consistent with known taxonomic relationships. The results also indicated that G. raimondii is the closest living relative of the ancestral D-genome donor of tetraploid species and the A-genome donor is much similar to the present-day G. herbaceum and G. arboreum. Ancient tetraploid cotton species were formed by hybridizing and chromosome doubling between them, then different tetraploid cotton species appeared by further geographical and genetic isolation and separating differentiation. The results showed that SSRs could be an ideal means for the identification of the genetic diversity and relationship of cotton resources at the genomic level.  相似文献   

2.
Thirty five bands (alleles) from six enzyme systems and fifty seven random amplified polymorphic DNA (RAPD) fragments were selected to analyse the genetic diversity of 33 polyploid wheatgrasses (Triticeae) populations of species Thinopyrum junceiforme and Elytrigia pycnantha, and two hybrids, one pentaploid and one novel 9-ploid. Dice’s similarity coefficient, the UPGMA-derived phenograms from RAPD, and allozymes markers showed that the clustering of wheatgrass populations was based on ploidy level. These markers had similar levels of diversity between populations, with high genetic similarity within the same ploidy-level and within population’s individuals. The tetraploid Th. junceiforme populations are closely related, with a large similarity distances varied from 0.8 to 1. Based on the isozyme and RAPD analyses, diploid taxa are related to polyploids with similarity coefficients 0.4.  相似文献   

3.
Kantartzi SK  Ulloa M  Sacks E  Stewart JM 《Genetica》2009,136(1):141-147
The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relationships among accessions of geographically diverse G. arboreum cultivars. From more than 1,500 previously developed simple sequence repeat (SSR) markers, 115 genomic (BNL) and EST-derived (MUCS and MUSS) markers were used to evaluate the allelic diversity of a core panel of G. arboreum accessions. These SSR data enabled advanced genome analyses. A set of 25 SSRs were selected based both upon their high level of informativeness (PIC ≥ 0.50) and the production of clear PCR bands on agarose gels. Subsequently, 96 accessions representing a wide spectrum of diversity of G. arboreum cultivars were analyzed with these markers. The 25 SSR loci revealed 75 allelic variants (polymorphisms) ranging from 2 to 4 alleles per locus. The Neighborjoining (NJ) method, based on genetic dissimilarities, revealed that cultivars from geographically adjacent countries tend to cluster together. Outcomes of this research should be useful in decreasing redundancy of effort and in constructing a core collection of G. arboreum, important for efficient use of this genetic resource in cotton breeding.  相似文献   

4.
Scopelophila cataractae, one of the so-called copper mosses, has a broad geographic distribution that includes North, Central, and South America, Europe, and Asia, but is rare throughout its range. A genetic analysis of 32 populations from the United States, Europe, and Asia based on 15 putative allozyme loci indicates that levels of genetic diversity vary among geographic regions. Six European populations are fixed for the same alleles at all 15 loci, consistent with the hypothesis thatS. cataractae is a recent immigrant in that region. The species is more diverse in the U.S., where it appears to be native. Five populations collected on copper-enriched soils around shrines and temples in Tokyo are genetically monomorphic, but Asian populations from another Japanese site, India, and Nepal are exceptionally diverse in terms of numbers of alleles and multilocus haplotypes, total gene diversity (HT), and in the degree of differentiation among populations (measured as Nei'sI andD). Long-distance dispersal has probably played an important role in the geographic history ofS. cataractae, but the species appears to be native in both the New and Old Worlds. Gene flow between plants disjunct on different continents is insufficient to explain the lack of geographically correlated morphological and genetic differentiation inS. cataractae.  相似文献   

5.
Amplified fragment length polymorphism fingerprinting was applied to survey the genetic diversity of primitive South American Gossypium barbadense cotton for establishing a possible link to its pre-Columbian expansion. New germplasm was collected along coastal Peru and over an Andean transect in areas where most of the archaeological evidence relating to cotton domestication has been recorded. Gene bank material of three diploid (G. raimondii, G. arboreum, and G. herbaceum) and four allotetraploid cotton species (G. hirsutum, G. mustelinum, G. tomentosum and additional G. barbadense) was added for inter- and intra-specific comparison. Eight primer combinations yielded 340 polymorphic bands among the 131 accessions. The obtained neighbor joining and unweighted pair-group method with arithmetic means are in full agreement with the known cytogenetics of the tetraploid cottons and their diploid genome donors. The four tetraploid species are clearly distinct based on taxonomic classification. The genetic diversity within G. barbadense reveals geographic patterns. The locally maintained cottons from coastal Peru display a distinct genetic diversity that mirrors their primitive agro-morphological traits. Accessions from the northernmost coast of Peru and from southwestern (SW) Ecuador cluster basal to the east-of-Andes accessions. The remaining accessions from Bolivia, Brazil, Columbia, Venezuela, and the Caribbean and Pacific islands cluster with the east-of-Andes accessions. Northwestern Peru/SW Ecuador (the area flanking the Guayaquil gulf) appears to be the center of the primitive domesticated G. barbadense cotton from where it spread over the Andes and expanded into its pre-Columbian range.This publication is dedicated to Prof. Dr. Drs.h.c. Gerhard Röbbelen on the occasion of his 75th birthday  相似文献   

6.
Sampling nucleotide diversity in cotton   总被引:1,自引:0,他引:1  

Background  

Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum) × 3-79 (G. barbadense) have been developed to allow high-density genetic mapping of traits.  相似文献   

7.
Electrophoretic variation was examined in 14 populations of tetraploid Deschampsia mackenzieana, an endemic of the Athabasca sand dunes in northern Saskatchewan, Canada, and 20 populations of its geographically widespread diploid progenitor, D. cespitosa. Three of the D. cespitosa populations were sympatric with the endemic on the Athabasca sand dunes. Populations of the endemic were found to have fewer alleles per locus (1.22 vs. 1.52), fewer alleles per polymorphic locus (2.17 vs. 2.70), lower percent polymorphic loci (18.9 vs. 30.5), and lower heterozygosity (0.062 vs. 0.119) than progenitor populations. Species level genetic diversity parameters also indicated that D. mackenzieana was genetically depauperate relative to its progenitor D. cespitosa. Deschampsia mackenzieana had no novel alleles but did share one allele with sympatric progenitor populations that did not occur in populations of D. cespitosa from other habitats. Although both species were found to partition most of their genetic diversity within populations, D. mackenzieana did have more of its limited genetic diversity partitioned among populations than D. cespitosa. The close genetic relationship between D. mackenzieana and sympatric populations of D. cespitosa may suggest the endemic tetraploid evolved from the sympatric diploid gene pool in the Athabasca sand dune region. The low levels of genetic diversity in D. mackenzieana suggest a restricted origin with limited gene flow from the progenitor since speciation.  相似文献   

8.

Key message

This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin.

Abstract

Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.
  相似文献   

9.
Microsatellites are often highly variable and abundant in most complex genomes, therefore are widely used in population genetic studies. In this study, twelve polymorphic microsatellite loci were isolated and characterized for the Achnatherum inebrians, a plant abundant in grasslands of Northwest China. Characterization of 24 A. inebrians individuals form four geographically distant populations (Gansu, Qinghai, Xinjiang and Inner Mongolia provinces) showed moderate to high allelic diversity ranging from 3 to 13 alleles per locus, and the expected heterozygosity ranging from 0.41 to 0.67. No evidence of linkage disequilibrium was found for any locus pairwise comparisons. The markers described here will be useful for investigating the genetic diversity, genetic structure and gene flow of this species. Na Chen and Yan-Zhuo Yang contributed equally to this work.  相似文献   

10.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

11.
Chromosome numbers and allozyme variations were surveyed in 74 polyploid populations ofTaraxacum hondoense, in northern Honshu, Japan. Most of the populations (94.4%) consisted of triploid (2n=24), indicating the predominance of this ploidy level. Approximately 42.6% were found to contain tetraploid (2n=32), and a few plants were pentaploid (2n=40). Electrophoretic analysis at6 Pgdh-1 revealed twelve phenotypes with four alleles (including one putative null allele). The triploids showed excessive heterozygosity (82.4%) and all of the tetraploids and pentaploids were heterozygote. Phenotype IV was the most frequent and widely distributed in northern Honshu. Forty five percent of the populations were found to contain multiple phenotypes at 6Pgdh-1. A total of 21 clones were distinguished using three polymorphic loci (6Pgdh-1, Got andMdh), and a considerable amount of clonal diversity was detected both within and among polyploid populations ofT. hondoense. Factors causing multiclonality in agamospermous polyploids are discussed.  相似文献   

12.
Genetic differentiation at the morphological, isozyme, and DNA levels among sevenDasypyrum villosum (Poaceae, Triticeae, 2n = 14, VV genomes) populations from Italy was studied. A measure of the mating system was also obtained. Genetic diversity was mainly distributed within populations (90%) rather than among populations (10%), typical for most allogamous species. Interpopulation diversity, however, was greatest between the most geographically distant populations (about 750 km apart, 911 m altitude difference). The mating system was estimated to vary from 55 to 100% outcrossing. One population (I-16, Bomarzo) deviated from the others in its uniform early flowering habit and presence of isozyme alleles not found in other populations. It had genetic diversity similar to other populations for isozyme (Got-V2, Got-V3, andEst-VF) and ribosomal RNA (Nor-Vl) loci. This population is believed to be the product of a few migrant founder seeds and its unique characters point out that generalized population biology parameters of genetic diversity are not sufficient for describing species variation nor for developing conservation strategies.  相似文献   

13.
A series of 320 mapped simple sequence repeats (SSRs) have been used to screen the allelic diversity of tetraploid Gossypium species. Fourty-seven genotypes were analyzed representing (i) the wide spectrum of diversity of the cultivated pool and of the primitive landraces of species G. hirsutum (‘marie-galante’, ‘punctatum’, ‘richmondi’, ‘morrilli’, ‘palmeri’, and ‘latifolium’, and ‘yucatanense’), and (ii) species G. barbadense, G. darwinii and G. tomentosum. The polymorphism of 201 SSR loci revealed 1128 allelic variants ranging from 3 to 17 per locus. Neighbor-joining (NJ) method based on genetic dissimilarities produced groupings consistent with the assignments of accessions both at species and at race level. Our data confirmed the proximity of the Galapagos endemic species G. darwinii to species G. barbadense. Within species G. hirsutum, and as compared to the other 6 races, race yucatanense appeared as the most distant from cultivated genotypes. Race yucatanense also exhibited the highest number of unique alleles. The important informative heterogeneity of the 201 SSR loci was exploited to select the most polymorphic ones that were assembled into three series of genome-wide (i.e. each homoeologous AD chromosome pair being equally represented) and mutliplexable (× 3) SSRs. Using one of these ‘genotyping set’, consisting of 39 SSRs (one 3-plex for each of the 13 AD chromosomes pairs) or 45 loci, we were able to assess the relationships between accessions and the topology in the genetic diversity sampled. Such genotyping set of highly informative SSR markers assembled in PCR-multiplex, while increasing genotyping throughput, will be applicable for molecular genetic diversity studies of large germplasm collections. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
薄叶金花茶、小花金花茶和小瓣金花茶是三种濒危金花茶植物,为了解珍稀濒危植物遗传多样性和遗传结构,该研究利用微卫星标记对他们的7个种群共184个个体进行了遗传多样性和遗传结构分析。结果表明:11个位点共检测到等位基因92个。在物种水平上,小瓣金花茶平均等位基因数(N_A)为3.9、有效等位基因数(N_E)为2.328、观测杂合度(H_o)为0.520、期望杂合度(H_e)为0.501,高于薄叶金花茶和小花金花茶。在种群水平上,有效等位基因数(N_E)在1.788~2.466之间,期望杂合度(H_e)在0.379~0.543之间;种群间遗传分化系数(FST)在0.143 7~0.453 3之间,种群间基因流(N_m)在0.301 5~1.488 9之间。AMOVA分子变异分析显示65.72%的变异存在于种群内。三种金花茶具有较低水平的遗传多样性和高水平的种群间遗传分化。STRUCTURE和PCoA种群遗传结构分析结果将取样种群分为2组,即薄叶金花茶和小花金花茶大部分个体分为一组,小瓣金花茶大部分个体分为一组。现存所有种群应根据实际情况尽快采取就地保护或迁地保护措施。  相似文献   

15.
Hosta minor, an insect-pollinated and rhizomatous herbaceous perennial, occurs in eastern and southern Korean Peninsula. AlthoughH. minor is a Korean endemic species and most populations of the species are scattered, the species maintains considerably high levels of genetic variation within the species, with a moderate level of variation (14%) found among populations. Nineteen of the 29 putative loci resolved (66%) were polymorphic within the species, the mean number of alleles per locus was 2.10 across all populations and averaged 1.68 within populations. In addition, genetic diversity was a considerably higher (for species and population level, mean estimates of genetic diversity were 0.275 and 0.230, respectively) than the average for other long-lived herbaceous perennials. Indirect estimate of the number of migrants per generation (Nm=1.03, calculated from mean GST) was moderate. Factors contributing to the high levels of genetic diversity found within populations ofH. minor include population maintenance via sexual and asexual modes of reproduction, primarily outcrossing breeding system, long generation time, probable ancient polyploid origin of the species, and moderate levels of seed dispersal by wind. Human disturbance in South Korea such as road and apartment constructions appears to be the major threat to this genetically diverse species.  相似文献   

16.
Gossypium mustelinum is a wild cotton relative found only in the semiarid region of Bahia state in Brazil, and changes caused by humans in the natural habitat of this species have endangered the existence of several natural populations. Information about the occurrence and genetic composition of these populations is necessary to design effective conservation measures. The aim of this study was to characterize the in situ maintenance mode and assess the genetic diversity of G. mustelinum populations in the basin of the De Contas River. A sample of 205 G. mustelinum specimens was collected from the margins of the Jacaré, Riacho Quixaba, Riacho Serra Azul, and Riacho Riachão rivers and genotyped using 13 SSR primer pairs. In general, all G. mustelinum populations exhibit inadequate in situ maintenance, predominantly due to the deforestation of riparian vegetation and herbivory. The observed total genetic diversity of G. mustelinum was significant (H E = 0.489), highly structured (F ST = 0.534), and organized in homozygous genotypes (F IS = 0.873). The high observed inbreeding level is consistent with the predominance of self-fertilization and geitonogamy (t m = 0.234). In addition, the pattern of genetic structure tended to form groups that coincided with the collection sites, i.e., first clustering within subpopulations, then within populations, and finally within the closest populations. Thus, the observed genetic diversity is likely to be rapidly lost, and conservation measures should therefore be undertaken.  相似文献   

17.
Juniperus przewalskii (Cupressaceae) is a dominant tree species endemic to the northeast Qinghai-Tibetan Plateau. This species plays an important role in maintaining the arid ecosystem in this region. However, natural distributions of this species have been declined. In order to develop effective conservation methods, it is important to know the distribution of the genetic diversity within and among populations. In this study, we developed nine new microsatellite loci for this species. We used the combining biotin capture method to enrich AG/CT/AC/GGT microsatellites. The polymorphisms of each locus were further assessed in 12 individuals from four geographically distant populations. The number of alleles per locus varied from three to six and expected heterozygosity ranged from 0.58 to 0.70. These loci together provide a useful tool to investigate the genetic diversity of this species. In addition, all markers have been crossly checked in the other four congeneric species.  相似文献   

18.
Theobroma grandiflorum (cupuassu) is an important fruit tree native to the Brazilian Amazon. Establishing the genetic diversity and structure of populations is critical to define long-term strategies for cupuassu conservation presently threatened by rapid deforestation. Three natural populations collected at the putative center of diversity, three groups of accessions established at a germplasm collection, and one derived from commercial plantings were analyzed. The genetic diversity was assessed using 21 polymorphic microsatellite loci originally developed for Theobroma cacao, disclosing a total of 113 alleles. The estimated genetic diversity parameters averaged over cupuassu populations (A = 3.53 alleles per locus; H e = 0.426; H o = 0.346) were lower than the values reported for other Neotropical tree species. The three natural populations presented a positive and significant fixation index (f), ranging from 0.133 to 0.234. Cupuassu apparently adhered to a general pattern of genetic diversity structure of some Neotropical tree species occurring at low densities, with a low intrapopulation genetic diversity and important levels of endogamy, possibly due to biparental inbreeding derived from the presence of spatial genetic structure in the populations. A high level of genetic divergence was detected among the natural populations (θ p = 0.301), a strong differentiation caused by limited gene flow, and suggesting that human interference in spreading and/or stimulating plantings might have had a smaller effect than expected. The approximate location of the T. grandiflorum center of diversity could not be confirmed by analyzing natural populations from the putative region.  相似文献   

19.
Salsola komarovi lljin is a herbaceous annual native to the sand dunes and beaches of Japan, northern China, Sakhalln and Korea. Starch-gel electrophoresis was conducted on leaves and stems collected from 300 plants in eight Korean populations. The mean number of alleles per locus (A p=1.51), mean expected heterozygosity (He p=0.116), and total genetic diversity (H T=0.279) were comparable with those for species with similar life history and ecological traits. A general conformance of genotype frequencies to Hardy-Weinberg expectations (meanF IS=−0.030) indicates thatS. komarovi is an outcrossing species. Slightly more than 20% of the genetic variation was found among populations (F ST=0.204). In addition, significant differences in allele frequency were detected between populations at all 11 polymorphic loci (P<0.001). Nei's genetic identities range from 0.885 to 0.985 with a mean of 0.942. However, indirect estimates of the number of migrant per generation (0.97, calculated fromF ST and 0.31, calculated from seven private alleles) indicate that the levels of gene flow is low among Korean populations. Although the species maintains a moderate level of genetic variation within populations, the small, isolated natural populations of the species have been severely destructed by human activities, particularly in summer season. If this is true, conservation efforts should be focused on those populations that currently maintain the most genetic diversity (e.g., populations of Cheju Island and coast of the southwestern Korean Peninsula).  相似文献   

20.
Lathyrus vernus (L.) Bernh. is a diploid, long-lived perennial and insect-pollinated herb with no special adaptation to long-distance dispersal. It occurs on neutral soil in deciduous forests throughout western Eurasia. Due to specific habitat preferences,L. vernus has a fragmented distribution with isolated populations. We investigated allozyme variation at eleven loci in 20 populations ofL. vernus from one geographically central region (the Czech Republic and the Slovak Republic) and two geographically marginal regions (southern and central Sweden) in the species present-day distribution. There was a clear differentiation between the three regions and the genetic distance between the populations was highly correlated with geographic distance. The total genetic diversity (HT) was 0.354. The proportion of genetic diversity due to differentiation between regions, and to differentiation between populations within regions, accounted for 10% each. There was no difference in level of genetic diversity between the three regions. No significant difference in level of genetic diversity was found between small and large populations. The genetic diversity inL. vernus may either be a result of the long generation-time of the species or peculiarities in the post-glacial migration species, e.g. survival only in refugia far east of the sampled populations and/or migration as a continuous process not involving founder-events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号